- Python 数据挖掘实战: 关联规则与聚类分析,解锁数据价值的钥匙
清水白石008
pythonPython题库python数据挖掘动画
Python数据挖掘实战:关联规则与聚类分析,解锁数据价值的钥匙引言在数字化浪潮席卷全球的今天,数据已成为企业和组织最重要的战略资产。海量数据蕴藏着巨大的价值,等待我们去挖掘和发现。数据挖掘(DataMining),作为从海量数据中提取有价值知识和模式的关键技术,正日益受到各行各业的重视。它如同探矿者的火眼金睛,能够穿透数据的迷雾,发现隐藏在背后的规律和趋势,为商业决策、科学研究和社会发展提供强有
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- SPSS配对t检验,配对样本的相关系数和对应的显著性该怎么理解呢?
cda2024
算法
在数据分析的世界里,SPSS是一个强大的工具,它可以帮助我们更好地理解和解释数据。今天我们要聊的是一个非常实用但又容易让人困惑的话题——SPSS配对t检验中的配对样本相关系数及其显著性该如何理解?想象一下,你是一名CDA(CertifiedDataAnalyst)持证人,正在为一家公司分析员工的绩效提升情况。公司实施了一项新的培训计划,并希望了解这项培训是否有效。为了评估培训效果,你需要比较员工在
- Prompt Engineering终极手册:构建高效AI提示词库的完整技术路线
LCG元
大模型prompt人工智能
目录一、提示词库构建核心架构二、关键技术实现步骤1.数据采集与清洗2.提示词向量化编码3.聚类分析与分类存储三、API服务化部署四、性能优化方案五、监控与持续优化六、应用效果展示本文将深入探讨构建企业级AI提示词库的完整技术方案,含数据处理、模型训练、部署监控全流程代码实现在AI应用爆炸式增长的今天,提示词质量直接决定模型输出效果。本文将手把手教你构建企业级提示词库,涵盖以下核心技术环节:一、提示
- 从0开始学习R语言--Day27--空间自相关
Chef_Chen
学习
有的时候,我们在数据进行分组时,会发现用正常的聚类分析的方法和思维,分组的情况不是很理想。其实这是因为我们常常会忽略一个问题:假设我们正在分析的数据是真实的,那么它也肯定在一定程度上符合客观规律。而如果我们正在分析的数据中,有真实的客观空间数据时,可以考虑用空间自相关的方法去分析。例如我们在分析城市犯罪率的时候,用聚类分析的思维,我们可能会思考不同城市的犯罪特征是什么,是否有相似点,亦或是试图把城
- BIRCH、K-Means、KNN聚类算法实战:二维坐标空间聚类分析
闲书郎
本文还有配套的精品资源,点击获取简介:本项目深入探讨BIRCH、K-Means、K-Means++和K-NearestNeighbors(KNN)四种聚类算法在二维坐标空间中的应用与分析。通过Python代码实现,项目着重介绍算法的运行机制,以及它们在聚类任务中的效果和优缺点。测试集包含二维坐标数据,通过比较不同算法处理效果,学习者将加深对算法的理解,并为未来的数据分析工作打下基础。1.聚类算法在
- 文本聚类分析:基于相似性的文档分组
Morpheon
RRTextClustering
大家周一快乐!最近世界局势动荡,中东冲突不断。这种混乱可能会影响我们对世界的认知。就像法国人说的“C’estlavie”(这就是生活)。但无论未来如何,请记住瑞士人常说的“Lavieestbelle”(生活是美好的)。文本聚类分析通过内容相似性将文档分组,实现在R语言中自动对大型文本集合进行分类。什么是文本聚类分析?聚类分析将文档分组,使得同一组内的文档彼此之间的相似度高于与其他组中文档的相似度。
- 没有统计学基础,如何才能学好SPSS和SAS?
cda2024
学习python数据分析
在当今数据驱动的时代,掌握数据分析工具如SPSS和SAS已经成为许多职场人士的必备技能。然而,很多初学者常常会问:“我没有统计学基础,如何才能学好SPSS和SAS?”这确实是一个值得探讨的问题。本文将从多个角度为你解答这个问题,并提供一些实用的学习建议。一、理解SPSS和SAS的定位首先,让我们来了解一下SPSS和SAS这两个工具的定位和功能。SPSS(StatisticalPackagefort
- 数据挖掘是什么?数据挖掘技术有哪些?
Leo.yuan
数据数据挖掘人工智能大数据数据库数据分析
目录一、数据挖掘是什么二、常见的数据挖掘技术1.关联规则挖掘2.分类算法3.聚类分析4.回归分析三、数据挖掘的应用领域1.商业领域2.医疗领域3.金融领域4.其他领域四、数据挖掘面临的挑战和未来趋势1.面临的挑战2.未来趋势五、总结数据挖掘在当今时代的重要性日益凸显,它能从海量的数据中发现有价值的信息。下面我将为大家详细介绍数据挖掘是什么,以及常见的数据挖掘技术有哪些。本文核心观点如下:数据挖掘是
- 数学建模期末速成 聚类分析与判别分析
HCl+NaOH=NaCl+H_2O
数学建模
聚类分析是在不知道有多少类别的前提下,建立某种规则对样本或变量进行分类。判别分析是已知类别,在已知训练样本的前提下,利用训练样本得到判别函数,然后对未知类别的测试样本判别其类别。聚类分析根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行分类。常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。对样本进行分类称为Q型聚类分析,
- 聚类分析现状
云cia
机器学习人工智能
针对上述问题,一种结合降维技术和聚类算法的解决方案被广泛认可,即先采用降维技术,如主成分分析、局部线性嵌入或核方法等对数据进行降维,再对降维后的特征进行聚类.该方案虽然在一定程度上降低了高维空间的聚类难度,但由于数据降维是独立于聚类任务的,这意味着提取的特征往往并不具备簇类结构.子空间方法则提供另一种很好的思路.该方法假设高维数据分布于多个低维子空间的组合,通过将高维数据分割到各自所属的本征低维子
- 打卡第十八天
Shining_Jiang
人工智能机器学习
聚类后的分析:推断簇的类型知识点回顾:推断簇含义的两个思路:先选特征和后选特征。先选特征是指在聚类之前根据领域知识或假设选择特定的特征进行聚类;后选特征则是在聚类完成后,通过分析簇的特征来推断其含义。通过可视化图形借助AI定义簇的含义。可视化工具如散点图、热图等可以帮助直观地观察簇的分布和特征,结合AI算法可以更准确地定义簇的含义。科研逻辑闭环:通过精度判断特征工程价值。在聚类分析中,特征工程的质
- 大数据领域的游戏数据运营策略
大数据洞察
大数据游戏ai
大数据领域的游戏数据运营策略关键词:大数据、游戏数据运营、用户行为分析、精准营销、游戏平衡摘要:本文聚焦于大数据领域下的游戏数据运营策略。在当今游戏市场竞争激烈的环境中,充分利用大数据技术能够为游戏的运营和发展提供有力支持。文章从背景介绍入手,阐述了大数据在游戏数据运营中的重要性和应用范围,详细讲解了核心概念如用户画像、游戏数据指标等及其相互联系。接着深入剖析核心算法原理,包括聚类分析、关联规则挖
- Sentence Transformers 教程!
小森( ﹡ˆoˆ﹡ )
人工智能transformernlplangchaingpt-3python
SentenceTransformers专注于句子和文本嵌入,支持超过100种语言。利用深度学习技术,特别是Transformer架构的优势,将文本转换为高维向量空间中的点,使得相似的文本在几何意义上更接近。语义搜索:构建高效的语义搜索系统,找到最相关的查询结果。信息检索与重排:在大规模文档集合中查找相关文档并重新排序。聚类分析:将文本自动分组,发现隐藏的主题或模式。摘要挖掘:识别和提取文本的主要
- 美区电商商家境内邮寄怎么获取USPS可SCF折扣单
北***扣
大数据
以下是美区电商商家获取USPS可验资SCF折扣单的完整流程与策略:一、核心获取渠道亚马逊平台内置服务在卖家后台注册BuyShippingAPI,勾选USPSSCF服务条款,系统自动匹配平台提供的专属折扣(首重低至$0.8/单)。配置发货偏好时选择“USPSSmallPackageService”,匹配轻小件标准(重量1-10磅,尺寸≤1立方英尺)。第三方物流管理系统通过USPS2280
- graphpad prism显著性差异分析_「SPSS数据分析」SPSS差异分析(4)配对样本T检验的操作步骤...
weixin_39740283
graphpadprism显著性差异分析spss非线性回归分析步骤
上期我们详细讲解了独立样本T检验在SPSS中的详细操作和输出结果的解读:《SPSS差异分析(3)独立样本T检验的操作步骤及结果解读》独立样本T检验适用于两个完全独立的样本,之间没有任何相互关联,例如男性和女性;本科和专科等等。在实际研究中,有时候会遇到存在相互有关联的两组样本:例如某个指标干预前和干预后的两组值,此类样本属于自身配对样本;又例如2只特性完全一样的小鼠(性别,体重,身长等都一致),然
- 折线图标注显著性差异分析_「SPSS数据分析」SPSS非参数假设检验(3)单样本K-S检验...
冯爽妹
折线图标注显著性差异分析
单样本K-S检验是一种针对单个变量的数据分布进行的探索类别的检验方法。它不需要将数据分组,直接对原始数据的n个观测值进行检验,单样本K-S检验主要用于连续型数据。其中可检验分布类别有正态分布、平均分布、泊松分布、指数分布等。通常用到最多的就是检验是否服从正常性分布。下面,我们通过实际案例来详细讲解单样本K-S检验数据是否符合正态分布。我们搜集了472例减肥前体重数据,检验该数据整体上是否服从正态性
- Dunn’s test和Bonferroni校正的spss界面操作
一只土卜皿
spssspss
好的,用户现在问的是Dunn’stest和Bonferroni校正的SPSS界面操作。首先,我需要确认用户的需求。他们可能是在进行多重比较,比如在Kruskal-Wallis检验之后需要成对比较,而Dunn’stest正是用于这种情况的非参数方法。Bonferroni校正是用来控制多重比较的误差,避免假阳性结果。接下来,用户可能已经完成了Kruskal-Wallis检验,得到了显著的结果,现在需要
- 小样本百分比的统计检验
一只土卜皿
spssspss学习
当样本量小于40且需要比较占比(比例)的统计学差异时,需根据具体场景选择适当的方法。以下是针对小样本量的推荐方法和操作步骤:1.核心方法选择(1)两组占比比较(如A组20%vsB组40%)Fisher精确检验(Fisher’sExactTest)适用条件:样本量<40,或任一格期望频数<5。适用于2×2列联表(如两组+二分类结局)。SPSS操作:Analyze→DescriptiveStatist
- 2021年认证杯SPSSPRO杯数学建模B题(第二阶段)依巴谷星表中的毕星团求解全过程文档及程序
数模竞赛Paid answer
数学建模认证杯数据分析数学建模认证杯数学建模数据分析
2021年认证杯SPSSPRO杯数学建模B题依巴谷星表中的毕星团原题再现: 依巴谷卫星(HighPrecisionParallaxCollectingSatellite,缩写为Hip-parcos),全称为“依巴谷高精度视差测量卫星”,是欧洲空间局发射的一颗天体测量卫星,用以精确测量恒星的视差和自行。通过视差可以推断出恒星距地球的距离。 毕星团位于金牛座,是离地球最近的疏散星团。其成员星在30
- Python数据分析实战:物流业数据分析
AI天才研究院
AIAgent应用开发计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
文章目录Python数据分析实战:物流业数据分析1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1物流数据类型2.2数据分析流程2.3常用分析方法2.4Python在数据分析中的角色2.5核心概念之间的联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1时间序列预测-ARIMA模型3.1.2聚类分析-K-means算法3.1.3分类算法-随机森
- Python爬虫实战:获取国家统计网最新消费数据并分析,为从业者做参考
ylfhpy
爬虫项目实战python爬虫开发语言javascript安全
一、系统定义与架构设计1.1系统定义本系统基于Python爬虫技术构建,实现国家数据网消费数据的自动化获取、清洗、分析及可视化。通过定义标准化的数据采集流程、反爬策略、数据分析模型,为经济研究、行业分析等场景提供数据支持。1.2架构设计数据采集层-->数据清洗层-->数据分析层-->可视化展示层↓↓↓↓代理池管理缺失值处理统计分析词云图请求调度类型转换聚类分析趋势图页面解析去重操作时间序列预测数据
- 决策树 连续变量_决策树在spss中的实现
DataStax
决策树连续变量
问题:spss关于决策树方法有哪些?回答:在SPSS中,关于决策树的方法介绍了四种,分别是CHAID、穷举CHAID、CRT、QUEST这四种。CHAID,就是卡方自动交互检验。顾名思义就是以卡方检验为判定准则。该方法要求解释变量和被解释变量都是分类变量,如果有连续变量,系统会将连续变量转化为分类变量;穷举CHAID,就是穷举卡方自动交互检验,是CHAID方法的“改进升级版”。CHAID在进行树的
- 26版SPSS操作教程(高级教程第一章)
Continue(延续)
大数据数据分析概率论
前言#经过20多天的坚持学习,本人也终于开启SPSS高级教程的副本了,茫茫长征路,需要我们一起共同去征服;#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次初级教程最后一期推送的学习笔记,希望能得到一些指正和帮助~粉丝及官方意见说明#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,
- 聚类分析的原理、常用算法及其应用
AI糊涂是福
人工智能算法机器学习人工智能
聚类分析的原理、常用算法及其应用一、聚类分析的基本原理(一)什么是聚类分析聚类分析是一种无监督学习方法,其目标是将数据集中的样本划分为若干个簇,每个簇包含相似的样本。聚类分析的核心思想是通过某种相似性度量(如距离)来衡量样本之间的相似性,并根据这些相似性将样本分组。(二)相似性度量在聚类分析中,相似性度量是关键。常用的相似性度量方法包括:欧氏距离:这是最常用的距离度量方法,适用于连续数值型数据。对
- 天生程序员鉴定宝典
百锦再@新空间
包罗万象python网络linuxdjangopygametornadoflask
文章目录第一章:程序员职业的本质解析1.1编程工作的核心特征1.2程序员职业的细分领域第二章:认知能力的适配性分析2.1逻辑思维能力的深度解析2.2抽象能力的层次分析第三章:性格特质的适配性研究3.1程序员性格特质的聚类分析3.2性格与职业发展的纵向研究第四章:学习能力的演进模式4.1程序员学习曲线的阶段性特征4.2持续学习的内在机制第五章:职业发展的路径优化5.1技术路线的能力演进5.2管理路线
- 基于 Google Earth Engine 的南京江宁区土地利用分类(K-Means 聚类)
AI_RSER
GEE基础教程kmeans算法机器学习GEE聚类遥感分类
一、引言其实利用GEE可以做的内容太多了,很多内容换一个区域,换一个时间段就是一篇本科毕业论文(设计),甚至拓展一下硕士也不是不行。本文将详细介绍如何使用GEE对南京江宁区的Landsat8地表反射率数据进行K-Means聚类分析,实现土地利用分类,并将结果可视化和导出。(后续有机会再给大家详细说一下如何完整的进行毕业论文的大纲和设计,甚至完成一篇十分简单的毕业论文。)二、代码实现2.1定义研究区
- 你需要掌握选择最佳聚类数目的这10个技巧!
weixin_33682790
人工智能python数据结构与算法
点击上方关注,AllinAI中国聚类是最常见的无监督机器学习问题之一。通过一些相似性度量方法把一些观测值分成同一类。共有5类聚类方法:层次法划分法(k-means,PAM,CLARA)基于密度的方法基于模型的方法模糊聚类起初,我写这篇文章主要是由于我阅读了关于clustree包,dendextend文档以及由AlboekadelKassambara撰写的factoextra编写的关于聚类分析的实用
- 数据挖掘技术与应用课程论文——数据挖掘中的聚类分析方法及其应用研究
小李独爱秋
数据挖掘技术与应用数据挖掘人工智能聚类算法
数据挖掘中的聚类分析方法及其应用研究摘要聚类分析是数据挖掘技术中的一个重要组成部分,它通过将数据集中的对象划分为多个组或簇,使得同一簇内的对象具有较高的相似性,而不同簇之间的对象具有较低的相似性。本文系统地研究了数据挖掘中的多种聚类分析方法及其应用。首先,介绍了聚类分析的基础理论,包括聚类分析的定义和对聚类算法性能的要求。接着,详细探讨了基于划分、层次、密度、网格和模型的五种主要聚类方法,并分析了
- 数据挖掘与机器学习技术
数据库
数据挖掘与机器学习技术数据挖掘算法:数据挖掘旨在从大量数据中发现潜在的模式和规律。常见的数据挖掘算法包括关联规则挖掘(如Apriori算法)、聚类分析(如K-Means算法)、分类算法(如决策树、支持向量机等)。例如,电商平台可以通过关联规则挖掘发现用户购买商品之间的关联关系,从而进行精准营销。机器学习框架:机器学习是大数据分析的核心技术之一,它让计算机通过数据学习模式和规律,并进行预测和决策。常
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的