opencv python 常用函数集合

  学习Python和OpenCV, 用gAWK抽出OpenCV函数方便查找,

从《The OpenCV Reference Manual, Release 2.4.8.0 》输出: 章节行, 函数行 ,页码

C++开头  1632行

C开头 469 行

Python开头 599行

以下是Python API,文字自动生成,很是粗糙,记录一下,看自己能走多远。2014.03.19


2.1 Basic Structures  
2.2 Basic C Structures and Operations  


         cv.ClearND (arr, idx ) None     67
         cv.CloneImage (image ) image     67
         cv.CloneMat (mat ) mat     68
         cv.CloneMatND (mat ) matND     68
         cv.ConvertScale (src, dst, scale=1.0, shift=0.0 ) None     68
         cv.Convert (src, dst ) None     68
         cv.Copy (src, dst, mask=None ) None     69
         cv.CreateData (arr ) None     69
         cv.CreateImage (size, depth, channels ) image     70
         cv.CreateImageHeader (size, depth, channels ) image     70
         cv.CreateMat (rows, cols, type ) mat     70
         cv.CreateMatHeader (rows, cols, type ) mat     71
         cv.CreateMatND (dims, type ) matND     71
         cv.CreateMatNDHeader (dims, type ) matND     71
         cv.CrossProduct (src1, src2, dst ) None     72
         cv.DotProduct (src1, src2 ) float     72
         cv.Get1D (arr, idx ) scalar     73
         cv.Get2D (arr, idx0, idx1 ) scalar     73
         cv.Get3D (arr, idx0, idx1, idx2 ) scalar     73
         cv.GetND (arr, indices ) scalar     73
         cv.GetCol (arr, col ) submat     73
         cv.GetCols (arr, startCol, endCol ) submat     73
         cv.GetDiag (arr, diag=0 ) submat     74
         cv.GetDims (arr) -> (dim1, dim2, ... )     74
         cv.GetElemType (arr ) int     75
         cv.GetImage (arr ) iplimage     75
         cv.GetImageCOI (image ) int     75
         cv.GetImageROI (image ) CvRect     75
         cv.GetMat (arr, allowND=0 ) mat     76
         cv.GetReal1D (arr, idx0 ) float     78
         cv.GetReal2D (arr, idx0, idx1 ) float     78
         cv.GetReal3D (arr, idx0, idx1, idx2 ) float     78
         cv.GetRealND (arr, idx ) float     78
         cv.GetRow (arr, row ) submat     78
         cv.GetRows (arr, startRow, endRow, deltaRow=1 ) submat     78
         cv.GetSize (arr)-> (width, height )     79
         cv.GetSubRect (arr, rect ) submat     79
         cv.ResetImageROI (image ) None     84
         cv.Reshape (arr, newCn, newRows=0 ) mat     84
         cv.ReshapeMatND (arr, newCn, newDims ) mat     85
         cv.Set (arr, value, mask=None ) None     86
         cv.Set1D (arr, idx, value ) None     86
         cv.Set2D (arr, idx0, idx1, value ) None     86
         cv.Set3D (arr, idx0, idx1, idx2, value ) None     86
         cv.SetND (arr, indices, value ) None     86
         cv.SetData (arr, data, step ) None     87
         cv.SetImageCOI (image, coi ) None     87
         cv.SetImageROI (image, rect ) None     87
         cv.SetReal1D (arr, idx, value ) None     88
         cv.SetReal2D (arr, idx0, idx1, value ) None     88
         cv.SetReal3D (arr, idx0, idx1, idx2, value ) None     88
         cv.SetRealND (arr, indices, value ) None     88
         cv.SetZero (arr ) None     88
         cv.mGet (mat, row, col ) float     88
         cv.mSet (mat, row, col, value ) None     89
         cv.RNG (seed=-1LL ) CvRNG     90
         cv.RandArr (rng, arr, distType, param1, param2 ) None     90
         cv.RandInt (rng ) unsigned     90
         cv.RandReal (rng ) float     91
         cv.fromarray (array, allowND=False ) mat     91
 
2.3 Dynamic Structures  
         cv.CloneSeq (seq, storage ) None     96
         cv.CreateMemStorage (blockSize=0 ) memstorage     99
 
2.4 Operations on Arrays  
        cv2.absdiff (src1, src2[, dst ]) dst     119
         cv.AbsDiff (src1, src2, dst ) None     119
         cv.AbsDiffS (src, dst, value ) None     120
        cv2.add (src1, src2[, dst[, mask[, dtype ]]]) dst     120
         cv.Add (src1, src2, dst, mask=None ) None     120
         cv.AddS (src, value, dst, mask=None ) None     120
        cv2.addWeighted (src1, alpha, src2, beta, gamma[, dst[, dtype ]]) dst     121
         cv.AddWeighted (src1, alpha, src2, beta, gamma, dst ) None     122
        cv2.bitwise_and (src1, src2[, dst[, mask ]]) dst     122
         cv.And (src1, src2, dst, mask=None ) None     122
         cv.AndS (src, value, dst, mask=None ) None     122
        cv2.bitwise_ not (src[, dst[, mask ]]) dst     123
         cv.Not (src, dst ) None     123
        cv2.bitwise_or (src1, src2[, dst[, mask ]]) dst     123
         cv.Or (src1, src2, dst, mask=None ) None     124
         cv.OrS (src, value, dst, mask=None ) None     124
        cv2.bitwise_xor (src1, src2[, dst[, mask ]]) dst     124
         cv.Xor (src1, src2, dst, mask=None ) None     124
         cv.XorS (src, value, dst, mask=None ) None     124
        cv2.calcCovarMatrix (samples,  flags[, covar[, mean[, ctype ]]]) covar, mean     125
         cv.CalcCovarMatrix (vects, covMat, avg,  flags ) None     125
        cv2.cartToPolar (x, y [, magnitude[, angle[, angleInDegrees ]]]) magnitude, angle     127
         cv.CartToPolar (x, y, magnitude, angle=None, angleInDegrees=0 ) None     127
        cv2.checkRange (a [, quiet[, minVal[, maxVal ]]]) retval, pos     127
        cv2.compare (src1, src2, cmpop[, dst ]) dst     128
         cv.Cmp (src1, src2, dst, cmpOp ) None     128
         cv.CmpS (src, value, dst, cmpOp ) None     128
        cv2.completeSymm (mtx [, lowerToUpper ]) None     129
        cv2.convertScaleAbs (src[, dst[, alpha[, beta ]]]) dst     129
         cv.ConvertScaleAbs (src, dst, scale=1.0, shift=0.0 ) None     129
        cv2.countNonZero (src ) retval     130
         cv.CountNonZero (arr ) int     130
        cv2.dct (src[, dst[,  flags ]]) dst     131
         cv.DCT (src, dst,  flags ) None     131
        cv2.dft (src[, dst[,  flags[, nonzeroRows ]]]) dst     133
         cv.DFT (src, dst,  flags, nonzeroRows=0 ) None     133
        cv2.divide (src1, src2[, dst[, scale[, dtype ]]]) dst     136
        cv2.divide (scale, src2[, dst[, dtype ]]) dst     136
         cv.Div (src1, src2, dst, scale=1 ) None     136
        cv2.determinant (mtx ) retval     137
         cv.Det (mat ) float     137
        cv2.eigen (src, computeEigenvectors[, eigenvalues[, eigenvectors ]]) retval, eigenvalues, eigen-     137
         cv.EigenVV (mat, evects, evals, eps, lowindex=-1, highindex=-1 ) None     137
        cv2.exp (src[, dst ]) dst     138
         cv.Exp (src, dst ) None     138
        cv2.flip (src, flipCode[, dst ]) dst     139
         cv.Flip (src, dst=None, flipMode=0 ) None     139
        cv2.gemm (src1, src2, alpha, src3, gamma[, dst[,  flags ]]) dst     140
         cv.GEMM (src1, src2, alpha, src3, beta, dst, tABC=0 ) None     140
        cv2.getOptimalDFTSize (vecsize ) retval     142
         cv.GetOptimalDFTSize (size0 ) int     142
        cv2.idct (src[, dst[,  flags ]]) dst     142
        cv2.idft (src[, dst[,  flags[, nonzeroRows ]]]) dst     142
        cv2.inRange (src, lowerb, upperb[, dst ]) dst     143
         cv.InRange (src, lower, upper, dst ) None     143
         cv.InRangeS (src, lower, upper, dst ) None     143
        cv2.invert (src[, dst[,  flags ]]) retval, dst     144
         cv.Invert (src, dst, method=CV_LU ) float     144
        cv2.log (src[, dst ]) dst     144
         cv.Log (src, dst ) None     144
        cv2.LUT (src, lut[, dst[, interpolation ]]) dst     145
         cv.LUT (src, dst, lut ) None     145
        cv2.magnitude (x, y [, magnitude ]) magnitude     145
        cv2.Mahalanobis (v1, v2, icovar ) retval     146
         cv.Mahalonobis (vec1, vec2, mat ) None     146
        cv2.max (src1, src2[, dst ]) dst     146
         cv.Max (src1, src2, dst ) None     147
         cv.MaxS (src, value, dst ) None     147
        cv2.mean (src[, mask ]) retval     147
         cv.Avg (arr, mask=None ) scalar     147
        cv2.meanStdDev (src[, mean[, stddev[, mask ]]]) mean, stddev     148
         cv.AvgSdv (arr, mask=None) -> (mean, stdDev )     148
        cv2.merge (mv [, dst ]) dst     148
         cv.Merge (src0, src1, src2, src3, dst ) None     148
        cv2.min (src1, src2[, dst ]) dst     149
         cv.Min (src1, src2, dst ) None     149
         cv.MinS (src, value, dst ) None     149
        cv2.minMaxLoc (src[, mask ]) minVal, maxVal, minLoc, maxLoc     150
         cv.MinMaxLoc (arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc )     150
        cv2.mixChannels (src, dst, fromTo ) None     151
         cv.MixChannels (src, dst, fromTo ) None     151
        cv2.mulSpectrums (a, b,  flags [, c[, conjB ]]) c     152
         cv.MulSpectrums (src1, src2, dst,  flags ) None     152
        cv2.multiply (src1, src2[, dst[, scale[, dtype ]]]) dst     152
         cv.Mul (src1, src2, dst, scale=1 ) None     153
        cv2.mulTransposed (src, aTa[, dst[, delta[, scale[, dtype ]]]]) dst     153
         cv.MulTransposed (src, dst, order, delta=None, scale=1.0 ) None     153
        cv2.norm (src1[, normType[, mask ]]) retval     154
        cv2.norm (src1, src2[, normType[, mask ]]) retval     154
         cv.Norm (arr1, arr2, normType=CV_L2, mask=None ) float     154
        cv2.normalize (src[, dst[, alpha[, beta[, norm_type[, dtype[, mask ]]]]]]) dst     155
        cv2.PCACompute (data [, mean[, eigenvectors[, maxComponents ]]]) mean, eigenvectors     157
        cv2.PCAComputeVar (data, retainedVariance [, mean[, eigenvectors ]]) mean, eigenvectors     157
        cv2.PCAProject (data, mean, eigenvectors [, result ]) result     158
        cv2.PCABackProject (data, mean, eigenvectors [, result ]) result     158
        cv2.perspectiveTransform (src, m[, dst ]) dst     159
         cv.PerspectiveTransform (src, dst, mat ) None     159
        cv2.phase (x, y [, angle[, angleInDegrees ]]) angle     159
        cv2.polarToCart (magnitude, angle [, x[, y[, angleInDegrees ]]]) x, y     160
         cv.PolarToCart (magnitude, angle, x, y, angleInDegrees=0 ) None     160
        cv2.pow (src, power[, dst ]) dst     161
         cv.Pow (src, dst, power ) None     161
        cv2.randu(dst, low, high ) None     164
        cv2.randn(dst, mean, stddev ) None     164
        cv2.randShuffle(dst [, iterFactor ]) None     165
        cv2.reduce(src, dim, rtype[, dst[, dtype ]]) dst     165
         cv.Reduce (src, dst, dim=-1, op=CV_REDUCE_SUM ) None     165
        cv2.repeat(src, ny, nx[, dst ]) dst     166
         cv.Repeat (src, dst ) None     166
        cv2.scaleAdd (src1, alpha, src2[, dst ]) dst     166
         cv.ScaleAdd (src1, scale, src2, dst ) None     167
        cv2.setIdentity (mtx [, s ]) None     167
         cv.SetIdentity (mat, value=1 ) None     167
        cv2.solve (src1, src2[, dst[,  flags ]]) retval, dst     168
         cv.Solve (A, B, X, method=CV_LU ) None     168
        cv2.solveCubic (coeffs [, roots ]) retval, roots     168
         cv.SolveCubic (coeffs, roots ) None     169
        cv2.solvePoly (coeffs [, roots[, maxIters ]]) retval, roots     169
        cv2.sort (src,  flags[, dst ]) dst     169
        cv2.sortIdx (src,  flags[, dst ]) dst     170
        cv2.split (m [, mv ]) mv     170
         cv.Split (src, dst0, dst1, dst2, dst3 ) None     171
        cv2.sqrt (src[, dst ]) dst     171
         cv.Sqrt (value ) float     171
        cv2.subtract (src1, src2[, dst[, mask[, dtype ]]]) dst     171
         cv.Sub (src1, src2, dst, mask=None ) None     171
         cv.SubRS (src, value, dst, mask=None ) None     171
         cv.SubS (src, value, dst, mask=None ) None     172
        cv2.SVDecomp (src[, w[, u[, vt[,  flags ]]]]) w, u, vt     174
         cv.SVD (A, W, U=None, V=None,  flags=0 ) None     174
        cv2.SVBackSubst (w, u, vt, rhs [, dst ]) dst     175
         cv.SVBkSb (W, U, V, B, X,  flags ) None     175
        cv2.sumElems (src ) retval     175
         cv.Sum (arr ) scalar     175
        cv2.trace (mtx ) retval     176
         cv.Trace (mat ) scalar     176
        cv2.transform (src, m[, dst ]) dst     176
         cv.Transform (src, dst, transmat, shiftvec=None ) None     176
        cv2.transpose (src[, dst ]) dst     177
         cv.Transpose (src, dst ) None     177
 
2.5 Drawing Functions  
        cv2.circle (img, center, radius, color [, thickness[, lineType[, shift ]]]) None     178
         cv.Circle (img, center, radius, color, thickness=1, lineType=8, shift=0 ) None     178
        cv2.clipLine (imgRect, pt1, pt2 ) retval, pt1, pt2     179
         cv.ClipLine (imgSize, pt1, pt2) -> (point1, point2 )     179
        cv2.ellipse (img, center, axes, angle, startAngle, endAngle, color [, thickness[, lineType[, shift ]]     179
        cv2.ellipse (img, box, color [, thickness[, lineType ]]) None     179
         cv.Ellipse (img, center, axes, angle, start_angle, end_angle, color, thickness=1, lineType=8,     179
         cv.EllipseBox (img, box, color, thickness=1, lineType=8, shift=0 ) None     179
        cv2.ellipse2Poly (center, axes, angle, arcStart, arcEnd, delta ) pts     180
        cv2.fillConvexPoly (img, points, color [, lineType[, shift ]]) None     181
         cv.FillConvexPoly (img, pn, color, lineType=8, shift=0 ) None     181
        cv2.fillPoly (img, pts, color [, lineType[, shift[, offset ]]]) None     181
         cv.FillPoly (img, polys, color, lineType=8, shift=0 ) None     181
        cv2.getTextSize (text, fontFace, fontScale, thickness ) retval, baseLine     182
         cv.GetTextSize (textString, font)-> (textSize, baseline )     182
        cv2.line (img, pt1, pt2, color [, thickness[, lineType[, shift ]]]) None     184
         cv.Line (img, pt1, pt2, color, thickness=1, lineType=8, shift=0 ) None     184
        cv2.rectangle(img, pt1, pt2, color [, thickness[, lineType[, shift ]]]) None     185
         cv.Rectangle (img, pt1, pt2, color, thickness=1, lineType=8, shift=0 ) None     185
        cv2.polylines (img, pts, isClosed, color [, thickness[, lineType[, shift ]]]) None     186
         cv.PolyLine (img, polys, is_closed, color, thickness=1, lineType=8, shift=0 ) None     186
        cv2.putText (img, text, org, fontFace, fontScale, color [, thickness[, lineType[, bottomLeftOrigin ]     186
         cv.PutText (img, text, org, font, color ) None     186
 
2.6 XML/YAML Persistence  
2.7 XML/YAML Persistence (C API)  
         cv.Load (filename, storage=None, name=None ) generic     206
         cv.Save (filename, structPtr, name=None, comment=None ) None     211
 
2.8 Clustering  
        cv2.kmeans (data, K, criteria, attempts,  flags [, bestLabels[, centers ]]) retval, bestLabels, centers     217
         cv.KMeans2 (samples, nclusters, labels, termcrit, attempts=1,  flags=0, centers=None ) float     217


2.9 Utility and System Functions and Macros  
        cv2.fastAtan2 (y, x ) retval     219
         cv.FastArctan (y, x ) float     219
        cv2.cubeRoot (val ) retval     220
         cv.Cbrt (value ) float     220
         cv.Ceil (value ) int     220
         cv.Floor (value ) int     220
         cv.Round (value ) int     220
         cv.IsInf (value ) int     221
         cv.IsNaN (value ) int     221
        cv2.checkHardwareSupport (feature ) retval     224
        cv2.getTickCount () retval     225
        cv2.getTickFrequency () retval     225
        cv2.getCPUTickCount () retval     226
        cv2.setUseOptimized (onoff ) None     227
        cv2.useOptimized () retval     227

3.1 Image Filtering  
        cv2.bilateralFilter (src, d, sigmaColor, sigmaSpace[, dst[, borderType ]]) dst     243
        cv2.adaptiveBilateralFilter (src, ksize, sigmaSpace[, dst[, anchor[, borderType ]]]) dst     244
        cv2.blur (src, ksize[, dst[, anchor[, borderType ]]]) dst     245
        cv2.borderInterpolate (p, len, borderType ) retval     245
        cv2.boxFilter (src, ddepth, ksize[, dst[, anchor[, normalize[, borderType ]]]]) dst     246
        cv2.copyMakeBorder (src, top, bottom, left, right, borderType[, dst[, value ]]) dst     247
         cv.CopyMakeBorder (src, dst, offset, bordertype, value=(0, 0, 0, 0) ) None     247
        cv2.dilate (src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue ]]]]]) dst     252
         cv.Dilate (src, dst, element=None, iterations=1 ) None     252
        cv2.erode (src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue ]]]]]) dst     253
         cv.Erode (src, dst, element=None, iterations=1 ) None     253
        cv2.filter2D (src, ddepth, kernel[, dst[, anchor[, delta[, borderType ]]]]) dst     253
         cv.Filter2D (src, dst, kernel, anchor=(-1, -1) ) None     254
        cv2.GaussianBlur (src, ksize, sigmaX[, dst[, sigmaY[, borderType ]]]) dst     254
        cv2.getDerivKernels (dx, dy, ksize [, kx[, ky[, normalize[, ktype ]]]]) kx, ky     255
        cv2.getGaussianKernel (ksize, sigma [, ktype ]) retval     256
        cv2.getStructuringElement (shape, ksize[, anchor ]) retval     256
         cv.CreateStructuringElementEx (cols, rows, anchorX, anchorY, shape, values=None ) kernel     257
        cv2.medianBlur (src, ksize[, dst ]) dst     257
        cv2.morphologyEx (src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue ]]]]])     258
         cv.MorphologyEx (src, dst, temp, element, operation, iterations=1 ) None     258
        cv2.Laplacian (src, ddepth[, dst[, ksize[, scale[, delta[, borderType ]]]]]) dst     259
         cv.Laplace (src, dst, apertureSize=3 ) None     259
        cv2.pyrDown (src[, dst[, dstsize[, borderType ]]]) dst     260
         cv.PyrDown (src, dst, filter=CV_GAUSSIAN_5X5 ) None     260
        cv2.pyrUp (src[, dst[, dstsize[, borderType ]]]) dst     260
         cv.PyrUp (src, dst, filter=CV_GAUSSIAN_5X5 ) None     260
        cv2.pyrMeanShiftFiltering (src, sp, sr[, dst[, maxLevel[, termcrit ]]]) dst     261
         cv.PyrMeanShiftFiltering (src, dst, sp, sr, max_level=1, term-     261
        cv2.sepFilter2D (src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType ]]]]) dst     262
         cv.Smooth (src, dst, smoothtype=CV_GAUSSIAN, param1=3, param2=0, param3=0, param4=0 )     263
        cv2.Sobel (src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType ]]]]]) dst     264
         cv.Sobel (src, dst, xorder, yorder, apertureSize=3 ) None     264
        cv2.Scharr (src, ddepth, dx, dy[, dst[, scale[, delta[, borderType ]]]]) dst     265

3.2 Geometric Image Transformations  
        cv2.convertMaps (map1, map2, dstmap1type [, dstmap1[, dstmap2[, nninterpolation ]]])     266
        cv2.getAffineTransform (src, dst ) retval     267
         cv.GetAffineTransform (src, dst, mapMatrix ) None     267
        cv2.getPerspectiveTransform (src, dst ) retval     268
         cv.GetPerspectiveTransform (src, dst, mapMatrix ) None     268
        cv2.getRectSubPix (image, patchSize, center [, patch[, patchType ]]) patch     268
         cv.GetRectSubPix (src, dst, center ) None     268
        cv2.getRotationMatrix2D (center, angle, scale ) retval     269
         cv.GetRotationMatrix2D (center, angle, scale, mapMatrix ) None     269
        cv2.invertAffineTransform (M [, iM ]) iM     269
         cv.LogPolar (src, dst, center, M,  flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS )     270
        cv2.remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue ]]]) dst     271
         cv.Remap (src, dst, mapx, mapy,  flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS, fill-     271
        cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation ]]]]) dst     271
         cv.Resize (src, dst, interpolation=CV_INTER_LINEAR ) None     271
        cv2.warpAffine (src, M, dsize[, dst[,  flags[, borderMode[, borderValue ]]]]) dst     273
         cv.WarpAffine (src, dst, mapMatrix,  flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,     273
         cv.GetQuadrangleSubPix (src, dst, mapMatrix ) None     273
        cv2.warpPerspective (src, M, dsize[, dst[,  flags[, borderMode[, borderValue ]]]]) dst     273
         cv.WarpPerspective (src, dst, mapMatrix,  flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS,     273
        cv2.initUndistortRectifyMap (cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type [,     274
         cv.InitUndistortRectifyMap (cameraMatrix, distCoeffs, R, newCameraMatrix, map1, map2 )     274
         cv.InitUndistortMap (cameraMatrix, distCoeffs, map1, map2 ) None     274
        cv2.getDefaultNewCameraMatrix (cameraMatrix [, imgsize[, centerPrincipalPoint ]]) retval     275
        cv2.undistort (src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix ]]) dst     276
         cv.Undistort2 (src, dst, cameraMatrix, distCoeffs ) None     276
         cv.UndistortPoints (src, dst, cameraMatrix, distCoeffs, R=None, P=None ) None     277
 
3.3 Miscellaneous Image Transformations  
        cv2.adaptiveThreshold (src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst ])     278
         cv.AdaptiveThreshold (src, dst, maxValue, adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C,     278
        cv2.cvtColor (src, code[, dst[, dstCn ]]) dst     279
         cv.CvtColor (src, dst, code ) None     279
        cv2.distanceTransform (src, distanceType, maskSize[, dst ]) dst     284
         cv.DistTransform (src, dst, distance_type=CV_DIST_L2, mask_size=3, mask=None, la-     284
        cv2.floodFill (image, mask, seedPoint, newVal [, loDiff[, upDiff[,  flags ]]]) retval, rect     285
         cv.FloodFill (image, seed_point, new_val, lo_diff=(0, 0, 0, 0), up_diff=(0, 0, 0, 0),  flags=4,     285
        cv2.integral (src[, sum[, sdepth ]]) sum     287
        cv2.integral2 (src[, sum[, sqsum[, sdepth ]]]) sum, sqsum     287
        cv2.integral3 (src[, sum[, sqsum[, tilted[, sdepth ]]]]) sum, sqsum, tilted     287
         cv.Integral (image, sum, sqsum=None, tiltedSum=None ) None     287
        cv2.threshold (src, thresh, maxval, type[, dst ]) retval, dst     288
         cv.Threshold (src, dst, threshold, maxValue, thresholdType ) None     289
        cv2.watershed (image, markers ) None     291
        cv2.grabCut (img, mask, rect, bgdModel, fgdModel, iterCount [, mode ]) None     291

3.4 Histograms  
        cv2.calcHist (images, channels, mask, histSize, ranges [, hist[, accumulate ]]) hist     292
         cv.CalcHist (image, hist, accumulate=0, mask=None ) None     293
        cv2.calcBackProject (images, channels, hist, ranges, scale [, dst ]) dst     295
         cv.CalcBackProject (image, back_project, hist ) None     295
        cv2.compareHist (H1, H2, method ) retval     296
         cv.CompareHist (hist1, hist2, method ) float     296
         cv.CalcEMD2 (signature1, signature2, distance_type, distance_func=None, cost_matrix=None,     297
        cv2.equalizeHist (src[, dst ]) dst     298
         cv.CalcBackProjectPatch (images, dst, patch_size, hist, method, factor ) None     298
         cv.CalcProbDensity (hist1, hist2, dst_hist, scale=255 ) None     299
         cv.ClearHist (hist ) None     300
         cv.CreateHist (dims, type, ranges=None, uniform=1 ) hist     300
         cv.GetMinMaxHistValue (hist)-> (min_value, max_value, min_idx, max_idx )     301
         cv.NormalizeHist (hist, factor ) None     302
         cv.ThreshHist (hist, threshold ) None     302
 
3.5 Structural Analysis and Shape Descriptors  
        cv2.moments (array [, binaryImage ]) retval     303
         cv.Moments (arr, binary=0 ) moments     303
        cv2.HuMoments (m [, hu ]) hu     304
         cv.GetHuMoments (moments ) hu     304
        cv2.findContours (image, mode, method [, contours[, hierarchy[, offset ]]]) contours, hierar-     305
         cv.FindContours (image, storage, mode=CV_RETR_LIST, method=CV_CHAIN_APPROX_SIMPLE,     305
        cv2.drawContours (image, contours, contourIdx, color [, thickness[, lineType[, hierarchy[,     306
         cv.DrawContours (img, contour, external_color, hole_color, max_level, thickness=1, lineType=8,     306
        cv2.approxPolyDP (curve, epsilon, closed [, approxCurve ]) approxCurve     308
         cv.ApproxChains (src_seq, storage, method=CV_CHAIN_APPROX_SIMPLE, parameter=0, mini-     309
        cv2.arcLength (curve, closed ) retval     309
         cv.ArcLength (curve, slice=CV_WHOLE_SEQ, isClosed=-1 ) float     309
        cv2.boundingRect (points ) retval     310
         cv.BoundingRect (points, update=0 ) CvRect     310
        cv2.contourArea (contour [, oriented ]) retval     310
         cv.ContourArea (contour, slice=CV_WHOLE_SEQ ) float     310
        cv2.convexHull (points [, hull[, clockwise[, returnPoints ]]]) hull     311
         cv.ConvexHull2 (points, storage, orientation=CV_CLOCKWISE, return_points=0 ) convexHull     311
        cv2.convexityDefects (contour, convexhull [, convexityDefects ]) convexityDefects     311
         cv.ConvexityDefects (contour, convexhull, storage ) convexityDefects     311
        cv2.fitEllipse (points ) retval     313
         cv.FitEllipse2 (points ) Box2D     313
        cv2.fitLine (points, distType, param, reps, aeps [, line ]) line     313
         cv.FitLine (points, dist_type, param, reps, aeps ) line     313
        cv2.isContourConvex (contour ) retval     314
         cv.CheckContourConvexity (contour ) int     314
        cv2.minAreaRect (points ) retval     315
         cv.MinAreaRect2 (points, storage=None ) Box2D     315
        cv2.minEnclosingCircle (points ) center, radius     315
         cv.MinEnclosingCircle (points)-> (int, center, radius )     315
        cv2.matchShapes (contour1, contour2, method, parameter ) retval     316
         cv.MatchShapes (object1, object2, method, parameter=0 ) float     316
        cv2.pointPolygonTest (contour, pt, measureDist ) retval     316
         cv.PointPolygonTest (contour, pt, measure_dist ) float     317
 
3.6 Motion Analysis and Object Tracking  
        cv2.accumulate (src, dst[, mask ]) None     318
         cv.Acc (image, sum, mask=None ) None     318
        cv2.accumulateSquare (src, dst[, mask ]) None     319
         cv.SquareAcc (image, sqsum, mask=None ) None     319
        cv2.accumulateProduct (src1, src2, dst[, mask ]) None     319
         cv.MultiplyAcc (image1, image2, acc, mask=None ) None     320
        cv2.accumulateWeighted (src, dst, alpha[, mask ]) None     320
         cv.RunningAvg (image, acc, alpha, mask=None ) None     320
 
3.7 Feature Detection  
        cv2.Canny (image, threshold1, threshold2 [, edges[, apertureSize[, L2gradient ]]]) edges     322
         cv.Canny (image, edges, threshold1, threshold2, aperture_size=3 ) None     322
        cv2.cornerEigenValsAndVecs (src, blockSize, ksize[, dst[, borderType ]]) dst     323
         cv.CornerEigenValsAndVecs (image, eigenvv, blockSize, aperture_size=3 ) None     323
        cv2.cornerHarris (src, blockSize, ksize, k[, dst[, borderType ]]) dst     324
         cv.CornerHarris (image, harris_dst, blockSize, aperture_size=3, k=0.04 ) None     324
        cv2.cornerMinEigenVal (src, blockSize[, dst[, ksize[, borderType ]]]) dst     324
         cv.CornerMinEigenVal (image, eigenval, blockSize, aperture_size=3 ) None     324
        cv2.cornerSubPix (image, corners, winSize, zeroZone, criteria ) None     325
         cv.FindCornerSubPix (image, corners, win, zero_zone, criteria ) corners     325
        cv2.goodFeaturesToTrack (image, maxCorners, qualityLevel, minDistance [, corners[, mask[,     326
         cv.GoodFeaturesToTrack (image, eigImage, tempImage, cornerCount, qualityLevel, minDistance,     326
        cv2.HoughCircles (image, method, dp, minDist [, circles[, param1[, param2[, minRadius[, maxRa-     328
        cv2.HoughLines (image, rho, theta, threshold [, lines[, srn[, stn ]]]) lines     329
         cv.HoughLines2 (image, storage, method, rho, theta, threshold, param1=0, param2=0 ) lines     329
        cv2.HoughLinesP (image, rho, theta, threshold [, lines[, minLineLength[, maxLineGap ]]])     330
        cv2.preCornerDetect (src, ksize[, dst[, borderType ]]) dst     333
         cv.PreCornerDetect (image, corners, apertureSize=3 ) None     333
 
3.8 Object Detection  
        cv2.matchTemplate (image, templ, method [, result ]) result     334
         cv.MatchTemplate (image, templ, result, method ) None     334
 
4.1 User Interface  
         cv.CreateTrackbar (trackbarName, windowName, value, count, onChange ) None     337
        cv2.getTrackbarPos (trackbarname, winname ) retval     338
         cv.GetTrackbarPos (trackbarName, windowName ) retval     338
        cv2.imshow (winname, mat ) None     338
         cv.ShowImage (name, image ) None     338
        cv2.namedWindow (winname [,  flags ]) None     339
         cv.NamedWindow (name,  flags=CV_WINDOW_AUTOSIZE ) None     339
        cv2.destroyWindow (winname ) None     340
         cv.DestroyWindow (name ) None     340
        cv2.destroyAllWindows () None     340
         cv.DestroyAllWindows () None     340
        cv2.moveWindow (winname, x, y ) None     340
         cv.MoveWindow (name, x, y ) None     340
        cv2.resizeWindow(winname, width, height ) None     340
         cv.ResizeWindow (name, width, height ) None     340
         cv.SetMouseCallback (windowName, onMouse, param=None ) None     341
        cv2.setTrackbarPos (trackbarname, winname, pos ) None     341
         cv.SetTrackbarPos (trackbarName, windowName, pos ) None     341
        cv2.waitKey ([delay ]) retval     341
         cv.WaitKey (delay=0 ) int     342
 
4.2 Reading and Writing Images and Video  
        cv2.imdecode (buf,  flags ) retval     343
        cv2.imencode (ext, img [, params ]) retval, buf     343
        cv2.imread (filename [,  flags ]) retval     344
         cv.LoadImage (filename, iscolor=CV_LOAD_IMAGE_COLOR ) None     344
         cv.LoadImageM (filename, iscolor=CV_LOAD_IMAGE_COLOR ) None     344
        cv2.imwrite (filename, img [, params ]) retval     345
         cv.SaveImage (filename, image ) None     345
        cv2.VideoCapture ()     347
        cv2.VideoCapture (filename )     347
        cv2.VideoCapture (device )     347
         cv.CaptureFromCAM (index ) CvCapture     347
         cv.CaptureFromFile (filename ) CvCapture     347
        cv2.VideoCapture.open (filename ) retval     348
        cv2.VideoCapture.open (device ) retval     348
        cv2.VideoCapture.isOpened () retval     348
        cv2.VideoCapture.release() None     348
        cv2.VideoCapture.grab () retval     348
         cv.GrabFrame (capture ) int     348
        cv2.VideoCapture.retrieve([image [, channel ]]) retval, image     349
         cv.RetrieveFrame (capture ) image     349
        cv2.VideoCapture.read([image ]) retval, image     349
         cv.QueryFrame (capture ) image     349
        cv2.VideoCapture.get (propId ) retval     350
         cv.GetCaptureProperty (capture, property_id ) float     350
        cv2.VideoCapture.set (propId, value ) retval     350
         cv.SetCaptureProperty (capture, property_id, value ) retval     350
        cv2.VideoWriter ([filename, fourcc, fps, frameSize [, isColor ]])     351
         cv.CreateVideoWriter (filename, fourcc, fps, frame_size, is_color=true ) CvVideoWriter     352
        cv2.VideoWriter.isOpened () retval     352
        cv2.VideoWriter.open (filename, fourcc, fps, frameSize [, isColor ]) retval     352
        cv2.VideoWriter.write (image ) None     352
        cv2.VideoWriter.open (filename, fourcc, fps, frameSize [, isColor ]) retval     352
        cv2.VideoWriter.isOpened () retval     352
        cv2.VideoWriter.write (image ) None     353
         cv.WriteFrame (writer, image ) int     353
 
4.3 Qt New Functions  
        cv2.setWindowProperty (winname, prop_id, prop_value ) None     354
        cv2.getWindowProperty (winname, prop_id ) retval     355

5.1 Motion Analysis and Object Tracking  
        cv2.calcOpticalFlowPyrLK (prevImg, nextImg, prevPts [, nextPts[, status[, err[, winSize[,     361
         cv.CalcOpticalFlowPyrLK (prev, curr, prevPyr, currPyr, prevFeatures, winSize, level, criteria,  flags,     361
        cv2.buildOpticalFlowPyramid (img, winSize, maxLevel [, pyramid[, withDerivatives[, pyrBor-     362
        cv2.calcOpticalFlowFarneback (prev, next, pyr_scale, levels, winsize, iterations, poly_n,     363
        cv2.estimateRigidTransform (src, dst, fullAffine ) retval     364
        cv2.updateMotionHistory (silhouette, mhi, timestamp, duration ) None     365
         cv.UpdateMotionHistory (silhouette, mhi, timestamp, duration ) None     365
        cv2.calcMotionGradient (mhi, delta1, delta2 [, mask[, orientation[, apertureSize ]]]) mask,     365
         cv.CalcMotionGradient (mhi, mask, orientation, delta1, delta2, apertureSize=3 ) None     365
        cv2.calcGlobalOrientation (orientation, mask, mhi, timestamp, duration ) retval     366
         cv.CalcGlobalOrientation (orientation, mask, mhi, timestamp, duration ) float     366
        cv2.segmentMotion (mhi, timestamp, segThresh [, segmask ]) segmask, boundingRects     367
         cv.SegmentMotion (mhi, seg_mask, storage, timestamp, seg_thresh ) boundingRects     367
        cv2.CamShift (probImage, window, criteria ) retval, window     367
         cv.CamShift (prob_image, window, criteria) -> (int, comp, box )     367
        cv2.meanShift (probImage, window, criteria ) retval, window     368
         cv.MeanShift (prob_image, window, criteria ) comp     368
        cv2.KalmanFilter ([dynamParams, measureParams [, controlParams[, type ]]])          cv.CreateKalman (dynam_params, measure_params, control_params=0 ) CvKalman     369
        cv2.KalmanFilter.predict ([control ]) retval     369
         cv.KalmanPredict (kalman, control=None ) mat     369
        cv2.KalmanFilter.correct (measurement ) retval     370
         cv.KalmanCorrect (kalman, measurement ) mat     370
        cv2.BackgroundSubtractor.apply (image [, fgmask[, learningRate ]]) fgmask     370
        cv2.BackgroundSubtractorMOG ([history, nmixtures, backgroundRatio [, noiseSigma ]])     371

6.1 Camera Calibration and 3D Reconstruction  
        cv2.calibrateCamera (objectPoints, imagePoints, imageSize [, cameraMatrix[, distCoeffs[, rvecs[,     379
         cv.CalibrateCamera2 (objectPoints, imagePoints, pointCounts, imageSize, cameraMatrix, distCo-     379
        cv2.calibrationMatrixValues (cameraMatrix, imageSize, apertureWidth, apertureHeight )     381
        cv2.composeRT (rvec1, tvec1, rvec2, tvec2 [, rvec3[, tvec3[, dr3dr1[, dr3dt1[, dr3dr2[, dr3dt2[,     382
         cv.ComputeCorrespondEpilines (points, whichImage, F, lines ) None     382
        cv2.convertPointsToHomogeneous (src[, dst ]) dst     383
        cv2.convertPointsFromHomogeneous (src[, dst ]) dst     383
         cv.ConvertPointsHomogeneous (src, dst ) None     383
        cv2.correctMatches (F, points1, points2 [, newPoints1[, newPoints2 ]]) newPoints1, new-     384
        cv2.decomposeProjectionMatrix (projMatrix [, cameraMatrix[, rotMatrix[, transVect[, rotMa-     384
         cv.DecomposeProjectionMatrix (projMatrix, cameraMatrix, rotMatrix, transVect, rotMa-     384
        cv2.drawChessboardCorners (image, patternSize, corners, patternWasFound ) None     385
         cv.DrawChessboardCorners (image, patternSize, corners, patternWasFound ) None     385
        cv2.findChessboardCorners (image, patternSize [, corners[,  flags ]]) retval, corners     386
         cv.FindChessboardCorners (image, patternSize,  flags=CV_CALIB_CB_ADAPTIVE_THRESH )     386
        cv2.findCirclesGridDefault (image, patternSize [, centers[,  flags ]]) retval, centers     387
        cv2.solvePnP (objectPoints, imagePoints, cameraMatrix, distCoeffs [, rvec[, tvec[, useExtrin-     388
         cv.FindExtrinsicCameraParams2 (objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec,     388
        cv2.solvePnPRansac (objectPoints, imagePoints, cameraMatrix, distCoeffs [, rvec[, tvec[, use-     389
        cv2.findFundamentalMat (points1, points2 [, method[, param1[, param2[, mask ]]]]) retval,     390
         cv.FindFundamentalMat (points1, points2, fundamentalMatrix, method=CV_FM_RANSAC,     390
        cv2.findHomography (srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask ]]]) ret-     391
         cv.FindHomography (srcPoints, dstPoints, H, method=0, ransacReprojThreshold=3.0, status=None )     391
        cv2.estimateAffine3D (src, dst[, out[, inliers[, ransacThreshold[, confidence ]]]]) retval,     392
        cv2.filterSpeckles (img, newVal, maxSpeckleSize, maxDiff [, buf ]) None     393
        cv2.getOptimalNewCameraMatrix (cameraMatrix, distCoeffs, imageSize, alpha [, newImgSize[,     393
         cv.GetOptimalNewCameraMatrix (cameraMatrix, distCoeffs, imageSize, alpha, newCameraMatrix,     393
        cv2.initCameraMatrix2D (objectPoints, imagePoints, imageSize [, aspectRatio ]) retval     394
         cv.InitIntrinsicParams2D (objectPoints, imagePoints, npoints, imageSize, cameraMatrix, aspec-     394
        cv2.matMulDeriv (A, B [, dABdA[, dABdB ]]) dABdA, dABdB     395
        cv2.projectPoints (objectPoints, rvec, tvec, cameraMatrix, distCoeffs [, imagePoints[, jacobian[,     395
         cv.ProjectPoints2 (objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints, dpdrot=None,     395
        cv2.reprojectImageTo3D(disparity, Q [, _3dImage[, handleMissingValues[, ddepth ]]])     396
         cv.ReprojectImageTo3D (disparity, _3dImage, Q, handleMissingValues=0 ) None     396
        cv2.RQDecomp3x3 (src[, mtxR[, mtxQ[, Qx[, Qy[, Qz ]]]]]) retval, mtxR, mtxQ, Qx, Qy, Qz     397
         cv.RQDecomp3x3 (M, R, Q, Qx=None, Qy=None, Qz=None ) eulerAngles     397
        cv2.Rodrigues (src[, dst[, jacobian ]]) dst, jacobian     397
         cv.Rodrigues2 (src, dst, jacobian=0 ) None     397
        cv2.StereoBM ([preset [, ndisparities[, SADWindowSize ]]])     399
         cv.CreateStereoBMState (preset=CV_STEREO_BM_BASIC, numberOfDisparities=0 )     399
        cv2.StereoBM.compute (left, right [, disparity[, disptype ]]) disparity     399
         cv.FindStereoCorrespondenceBM (left, right, disparity, state ) None     399
        cv2.StereoSGBM ([minDisparity, numDisparities, SADWindowSize [, P1[, P2[, disp12MaxDiff[,     401
        cv2.StereoSGBM.compute (left, right [, disp ]) disp     402
        cv2.stereoCalibrate (objectPoints, imagePoints1, imagePoints2, imageSize [, cameraMatrix1[,     402
         cv.StereoCalibrate (objectPoints, imagePoints1, imagePoints2, pointCounts, cameraMatrix1,     402
         cv.StereoRectify (cameraMatrix1, cameraMatrix2, distCoeffs1, distCoeffs2, imageSize, R, T,     404
        cv2.stereoRectifyUncalibrated (points1, points2, F, imgSize [, H1[, H2[, threshold ]]]) ret-     407
         cv.StereoRectifyUncalibrated (points1, points2, F, imageSize, H1, H2, threshold=5 ) None     407
        cv2.triangulatePoints (projMatr1, projMatr2, projPoints1, projPoints2 [, points4D ])     407

7.1 Feature Detection and Description  
7.2 Common Interfaces of Feature Detectors  
        cv2.KeyPoint ([x, y, _size [, _angle[, _response[, _octave[, _class_id ]]]]])
7.3 Common Interfaces of Descriptor Extractors  
7.4 Common Interfaces of Descriptor Matchers  
7.5 Common Interfaces of Generic Descriptor Matchers  
7.6 Drawing Function of Keypoints and Matches  
7.7 Object Categorization  
8.1 Cascade Classification  
        cv2.CascadeClassifier ([filename ])     448
        cv2.CascadeClassifier.empty () retval     449
        cv2.CascadeClassifier.load (filename ) retval     449
        cv2.CascadeClassifier.detectMultiScale (image [, scaleFactor[, minNeighbors[,  flags[, min-     449
        cv2.CascadeClassifier.detectMultiScale (image, rejectLevels, levelWeights [, scaleFactor[,     449
         cv.HaarDetectObjects (image, cascade, storage, scale_factor=1.1, min_neighbors=3,  flags=0,     449
        cv2.groupRectangles (rectList, groupThreshold [, eps ]) rectList, weights     451

8.2 Latent SVM  
9.1 Statistical Models  
        cv2.StatModel.save (filename [, name ]) None     459
        cv2.StatModel.load (filename [, name ]) None     459

9.2 Normal Bayes Classifier  
        cv2.NormalBayesClassifier ([trainData, responses [, varIdx[, sampleIdx ]]])         cv2.NormalBayesClassifier.train (trainData, responses [, varIdx[, sampleIdx[, update ]]])     461
        cv2.NormalBayesClassifier.predict (samples ) retval, results     462

9.3 K-Nearest Neighbors  
        cv2.KNearest.train (trainData, responses [, sampleIdx[, isRegression[, maxK[, updateBase ]]]     463
        cv2.KNearest.find_ nearest (samples, k[, results[, neighborResponses[, dists ]]]) retval, re-     463

9.4 Support Vector Machines  
        cv2.SVM ([trainData, responses [, varIdx[, sampleIdx[, params ]]]])     469
        cv2.SVM.train (trainData, responses [, varIdx[, sampleIdx[, params ]]]) retval     469
        cv2.SVM.train_auto (trainData, responses, varIdx, sampleIdx, params [, k_fold[, Cgrid[, gamma-     470
        cv2.SVM.predict (sample[, returnDFVal ]) retval     471
        cv2.SVM.predict_all (samples[, results ]) results     471
        cv2.SVM.get_ support_vector_count () retval     472
        cv2.SVM.get_var_count () retval     472

9.5 Decision Trees  
        cv2.DTree.train (trainData, tflag, responses [, varIdx[, sampleIdx[, varType[, missingDataMask[,     477
        cv2.DTree.predict (sample[, missingDataMask[, preprocessedInput ]]) retval     477
        cv2.DTree.getVarImportance () retval     478

9.6 Boosting  
        cv2.Boost ([trainData, tflag, responses [, varIdx[, sampleIdx[, varType[, missingDataMask[,     481
        cv2.Boost.train (trainData, tflag, responses [, varIdx[, sampleIdx[, varType[, missingDataMask[,     482
        cv2.Boost.predict (sample[, missing[, slice[, rawMode[, returnSum ]]]]) retval     482
        cv2.Boost.prune (slice ) None     483

9.7 Gradient Boosted Trees  
        cv2.GBTrees ([trainData, tflag, responses [, varIdx[, sampleIdx[, varType[, missingDataMask[,     486
        cv2.GBTrees.train (trainData, tflag, responses [, varIdx[, sampleIdx[, varType[, missingData-     486
        cv2.GBTrees.predict (sample[, missing[, slice[, k ]]]) retval     487
        cv2.GBTrees.clear () None     487

9.8 Random Trees  
        cv2.RTrees.train (trainData, tflag, responses [, varIdx[, sampleIdx[, varType[, missingData-     490
        cv2.RTrees.predict (sample[, missing ]) retval     490
        cv2.RTrees.predict_prob (sample[, missing ]) retval     491
        cv2.RTrees.getVarImportance () retval     491

9.9 Extremely randomized trees  
        cv2.EM ([nclusters [, covMatType[, termCrit ]]])     494
        cv2.EM.train (samples[, logLikelihoods[, labels[, probs ]]]) retval, logLikelihoods, labels,     495
        cv2.EM.trainE (samples, means0[, covs0[, weights0[, logLikelihoods[, labels[, probs ]]]]])     495
        cv2.EM.trainM (samples, probs0[, logLikelihoods[, labels[, probs ]]]) retval, logLikelihoods,     495
        cv2.EM.predict (sample[, probs ]) retval, probs     496
        cv2.EM.isTrained () retval     496

9.11 Neural Networks  
        cv2.ANN_MLP ([layerSizes [, activateFunc[, fparam1[, fparam2 ]]]])     500
        cv2.ANN_MLP.create (layerSizes [, activateFunc[, fparam1[, fparam2 ]]]) None     500
        cv2.ANN_MLP.train (inputs, outputs, sampleWeights [, sampleIdx[, params[,  flags ]]]) retval     501
        cv2.ANN_MLP.predict (inputs [, outputs ]) retval, outputs     502

9.12 MLData  
10.1 Fast Approximate Nearest Neighbor Search  
10.2 Clustering  
11.1 GPU Module Introduction  
11.2 Initalization and Information  
11.3 Data Structures  
11.4 Operations on Matrices  
11.5 Per-element Operations  
11.6 Image Processing  
11.7 Matrix Reductions  
11.8 Object Detection  
11.9 Feature Detection and Description  
11.11 Camera Calibration and 3D Reconstruction  
11.12 Video Analysis  
12.1 Inpainting  
        cv2.inpaint (src, inpaintMask, inpaintRadius,  flags[, dst ]) dst     629
         cv.Inpaint (src, mask, dst, inpaintRadius,  flags ) None     629
 
12.2 Denoising  
13.1 Stitching Pipeline  
13.2 References  
13.3 High Level Functionality  
13.4 Camera  
13.5 Features Finding and Images Matching  
13.6 Rotation Estimation  
13.7 Autocalibration  
13.8 Images Warping  
13.9 Seam Estimation  
13.11 Image Blenders  
14.1 Feature Detection and Description  
        cv2.SURF ([hessianThreshold [, nOctaves[, nOctaveLayers[, extended[, upright ]]]]])         cv2.SURF.detect (image [, mask ]) keypoints     663
         cv.ExtractSURF (image, mask, storage, params)-> (keypoints, descriptors )     663
 
15.1 Stereo Correspondence  
15.2 FaceRecognizer - Face Recognition with OpenCV  
15.3 Retina : a Bio mimetic human retina model  
15.4 OpenFABMAP  
16.1 Motion Analysis  
         cv.CalcOpticalFlowBM (prev, curr, blockSize, shiftSize, max_range, usePrevious, velx, vely )     759
         cv.CalcOpticalFlowHS (prev, curr, usePrevious, velx, vely, lambda, criteria ) None     760
         cv.CalcOpticalFlowLK (prev, curr, winSize, velx, vely ) None     760
 
16.2 Expectation Maximization  
16.3 Histograms  
         cv.QueryHistValue_ 1D (hist, idx0 ) float     765
         cv.QueryHistValue_2D (hist, idx0, idx1 ) float     765
         cv.QueryHistValue_3D (hist, idx0, idx1, idx2 ) float     765
         cv.QueryHistValue_ nD (hist, idx ) float     765
 
16.4 Planar Subdivisions (C API)  
         cv.CalcSubdivVoronoi2D (subdiv ) None     769
         cv.ClearSubdivVoronoi2D (subdiv ) None     769
         cv.CreateSubdivDelaunay2D (rect, storage ) CvSubdiv2D     769
         cv.FindNearestPoint2D (subdiv, pt ) point     769
         cv.Subdiv2DEdgeDst (edge ) point     770
         cv.Subdiv2DGetEdge (edge, type ) CvSubdiv2DEdge     770
         cv.Subdiv2DNextEdge (edge ) CvSubdiv2DEdge     771
         cv.Subdiv2DLocate (subdiv, pt) -> (loc, where )     772
         cv.Subdiv2DRotateEdge (edge, rotate ) CvSubdiv2DEdge     772
         cv.SubdivDelaunay2DInsert (subdiv, pt ) point     772
 
16.5 Feature Detection and Description  
16.6 Common Interfaces of Descriptor Extractors  
16.7 Common Interfaces of Generic Descriptor Matchers  
17.1 OpenCL Module Introduction  
17.2 Data Structures and Utility Functions  
17.3 Data Structures  
17.4 Operations on Matrics  
17.5 Matrix Reductions  
17.6 Image Filtering  
17.7 Image Processing  
17.8 ml.Machine Learning  
17.9 Object Detection  
17.11 Video Analysis  
17.12 Camera Calibration and 3D Reconstruction  
18.1 Super Resolution   --------------------- 本文来自 northelec 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/hyb0106/article/details/21489827?utm_source=copy

你可能感兴趣的:(opencv python 常用函数集合)