CSDN话题挑战赛第2期
参赛话题:
上期我们演示了在单人单机场景下的乐观锁秒杀业务,但是在集群模式下就不行了,在集群模式下会造成诸多并发问题,下面来看具体场景:
1、我们将服务启动两份,端口分别为 8081 和 8082:
2、然后修改 nginx 的 conf 目录下的 nginx.conf 文件,配置反向代理和负载均衡:
由于现在我们部署了多个 tomcat,每个 tomcat 都有一个属于自己的 jvm,那么假设在服务器 A 的 tomcat 内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器 B 的 tomcat 内部,又有两个线程,但是他们的锁对象写的虽然和服务器 A 一样,但是锁对象却不是同一个,所以线程 3 和线程 4 可以实现互斥,但是却无法和线程 1 和线程 2 实现互斥,这就是 集群环境下,syn 锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
那么分布式锁他应该满足一些什么样的条件呢?
可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思
互斥:互斥是分布式锁的最基本的条件,使得程序串行执行
高可用:程序不易崩溃,时时刻刻都保证较高的可用性
高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能
常见的分布式锁有三种
Mysql:mysql 本身就带有锁机制,但是由于 mysql 性能本身一般,所以采用分布式锁的情况下,其实使用 mysql 作为分布式锁比较少见
Redis:redis 作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用 redis 或者 zookeeper 作为分布式锁,利用 setnx 这个方法,如果插入 key 成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁
Zookeeper:zookeeper 也是企业级开发中较好的一个实现分布式锁的方案,由于本套视频并不讲解 zookeeper 的原理和分布式锁的实现,所以不过多阐述
实现分布式锁时需要实现的两个基本方法:
核心思路:
我们利用 redis 的 setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个 key 了,返回了 1,如果结果是 1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可。
锁的基本接口
public interface ILock {
/**
* 尝试获取锁
* timeoutSec锁的超时时间,过期自动释放
*/
boolean tryLock(long timeoutSec);
/**
* 释放锁
*/
void unlock();
}
SimpleRedisLock
利用 setnx 方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = Thread.currentThread().getId()
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}
public void unlock() {
//通过del删除锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
修改业务代码
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
Long userId = UserHolder.getUser().getId();
//创建锁对象(新增代码)
SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
//获取锁对象
boolean isLock = lock.tryLock(1200);
//加锁失败
if (!isLock) {
return Result.fail("不允许重复下单");
}
try {
//获取代理对象(事务)
IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
return proxy.createVoucherOrder(voucherId);
} finally {
//释放锁
lock.unlock();
}
}
逻辑说明:
持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程 2 来尝试获得锁,就拿到了这把锁,然后线程 2 在持有锁执行过程中,线程 1 反应过来,继续执行,而线程 1 执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程 2 的锁进行删除,这就是误删别人锁的情况说明
解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程 1 卡顿,锁自动释放,线程 2 进入到锁的内部执行逻辑,此时线程 1 反应过来,然后删除锁,但是线程 1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程 2 走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。
需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(可以用 UUID 表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致
核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。
SimpleRedisLock
private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
//具体代码如下:加锁
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}
//释放锁
public void unlock() {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁中的标示
String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
// 判断标示是否一致
if(threadId.equals(id)) {
// 释放锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
}
有关代码实操说明:
在我们修改完此处代码后,我们重启工程,然后启动两个线程,第一个线程持有锁后,手动释放锁,第二个线程 此时进入到锁内部,再放行第一个线程,此时第一个线程由于锁的 value 值并非是自己,所以不能释放锁,也就无法删除别人的锁,此时第二个线程能够正确释放锁,通过这个案例初步说明我们解决了锁误删的问题。
更为极端的误删逻辑说明:
线程 1 现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程 2 进来,但是线程 1 他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程 1 的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生,
基于 setnx 实现的分布式锁存在下面的问题:
- 重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如 HashTable 这样的代码中,他的方法都是使用 synchronized 修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized 和 Lock 锁都是可重入的。
- 不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。
- 超时释放:我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,虽然我们采用了 lua 表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患
- 主从一致性: 如果 Redis 提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。
那么什么是 Redission 呢
Redisson 是一个在 Redis 的基础上实现的 Java 驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的 Java 常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。
Redission 提供了分布式锁的多种多样的功能
引入依赖:
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.6</version>
</dependency>
配置 Redisson 客户端:
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redissonClient(){
// 配置
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.1.101:6379").setPassword("123456");
// 创建RedissonClient对象
return Redisson.create(config);
}
}
当用户发起请求,此时会请求 nginx,nginx 会访问到 tomcat,而 tomcat 中的程序,会进行串行操作,分成如下几个步骤
1、查询优惠卷
2、判断秒杀库存是否足够
3、查询订单
4、校验是否是一人一单
5、扣减库存
6、创建订单
优化方案:我们将耗时比较短的逻辑判断放入到 redis 中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行 queue 里边的消息,这样程序不就超级快了吗?而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个难点
第一个难点是我们怎么在 redis 中去快速校验一人一单,还有库存判断
第二个难点是由于我们校验和 tomct 下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单完成,为了完成这件事我们在 redis 操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步 queue 中去,后续操作中,可以通过这个 id 来查询我们 tomcat 中的下单逻辑是否完成了。
我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导 redis 中去根据 key 找对应的 value 是否大于 0 即可,如果不充足,则直接结束,如果充足,继续在 redis 中判断用户是否可以下单,如果 set 集合中没有这条数据,说明他可以下单,如果 set 集合中没有这条记录,则将 userId 和优惠卷存入到 redis 中,并且返回 0,整个过程需要保证是原子性的,我们可以使用 lua 来操作
当以上判断逻辑走完之后,我们可以判断当前 redis 中返回的结果是否是 0 ,如果是 0,则表示可以下单,则将之前说的信息存入到到 queue 中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单 id 来判断是否下单成功。
需求:
新增秒杀优惠券的同时,将优惠券信息保存到 Redis 中
基于 Lua 脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
如果抢购成功,将优惠券 id 和用户 id 封装后存入阻塞队列
开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
//SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
//private static final String SECKILL_STOCK_KEY ="seckill:stock:"
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
完整 lua 表达式
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
return 0
以上 lua 表达式执行完毕后,剩下的就是根据步骤 3,4 来执行我们接下来的任务了
VoucherOrderServiceImpl
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Resource
private ISeckillVoucherService seckillVoucherService;
@Resource
private RedisIdWorker redisIdWorker;
@Resource
private StringRedisTemplate stringRedisTemplate;
@Resource
private RedissonClient redissonClient;
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
static {
SECKILL_SCRIPT = new DefaultRedisScript<>();
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
private IVoucherOrderService proxy;
// 当初始化完毕后,就会去从对列中去拿信息
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
// 2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
}
private void handleVoucherOrder(VoucherOrder voucherOrder) {
//1.获取用户
Long userId = voucherOrder.getUserId();
// 2.创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
// 3.尝试获取锁
boolean isLock = redisLock.tryLock();
// 4.判断是否获得锁成功
if (!isLock) {
// 获取锁失败,直接返回失败或者重试
log.error("不允许重复下单!");
return;
}
try {
//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
proxy.createVoucherOrder(voucherOrder);
} finally {
// 释放锁
redisLock.unlock();
}
}
@Override
public Result seckillVoucher(Long voucherId) {
Long userId = UserHolder.getUser().getId();
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString()
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
// 2.2.为0 ,有购买资格,把下单信息保存到阻塞队列
VoucherOrder voucherOrder = new VoucherOrder();
// 2.3.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 2.4.用户id
voucherOrder.setUserId(userId);
// 2.5.代金券id
voucherOrder.setVoucherId(voucherId);
// 2.6.放入阻塞队列
orderTasks.add(voucherOrder);
// 3.获取代理对象
proxy = (IVoucherOrderService) AopContext.currentProxy();
// 4.返回订单id
return Result.ok(orderId);
}
@Transactional
@Override
public void createVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
// 5.1.查询订单
int count = Math.toIntExact(query().eq("user_id", userId).eq("voucher_id", voucherOrder).count());
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
log.error("不允许重复下单!");
return;
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherOrder).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
log.error("库存不足!");
return;
}
// 7.创建订单
save(voucherOrder);
}
}
通过加锁可以解决在分布式环境下的秒杀安全问题,并对此使用阻塞队列和分布式锁Redission分布式锁对业务功能进行优化.
如果这篇【文章】有帮助到你,希望可以给我点个赞,创作不易,如果有对Java后端或者对redis感兴趣的朋友,请多多关注
个人主页
谱尼学java