- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- 文本生成型人工智能:逻辑算法与文字组合的重构艺术
Somnolence.·.·.·.
人工智能人工智能算法重构人机交互aichatgpt
引言在数字化浪潮的推动下,文本生成型人工智能(如GPT系列、Claude、Deepseek等)正逐步从技术工具演化为人类社会的"数字镜像"。其本质并非简单的文字堆砌,而是基于算法逻辑对海量语言数据的学习与重组。这一过程既模仿了人类的思维模式,又受制于技术基础设施的物理边界。以下从三个维度解析其运行逻辑与技术哲学。一、数据训练:从概率统计到仿生逻辑的跨越文本生成型AI的核心在于通过神经网络模型对语言
- 麒麟SoC的详细架构组成介绍
小蘑菇二号
麒麟
目录麒麟SoC的主要组成部分1.应用处理器(ApplicationProcessor,AP)2.图形处理单元(GPU)3.神经网络处理单元(NPU)4.图像信号处理器(ISP)5.调制解调器(Modem,基带芯片)6.多媒体编解码器7.安全模块8.连接模块9.存储控制器10.电源管理单元(PMIC)典型麒麟SoC示例Kirin9000总结麒麟(Kirin)是华为自主研发的一系列高性能系统级芯片(S
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- 点云从入门到精通技术详解100篇-基于 CBCT 与口内扫描数据的牙齿点云配准
格图素书
深度学习计算机视觉数学建模人工智能
目录前言国内外研究现状传统牙齿配准点云配准2牙齿数据的深度学习点云配准基础2.1牙齿数据获取方法2.1.1口腔印模2.1.2辐射成像2.1.3口内扫描2.2深度学习网络2.2.1全连接神经网络2.2.2卷积神经网络2.2.3孪生神经网络2.3点云数据配准基础2.3.1点云数据格式2.3.2点云旋转表达2.3.3传统点云配准方法3基于PCRNet的PCR-SA牙齿点云配准3.1CBCT-IOS牙齿配
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 基于华为自研NPU Ascend 910的TensorFlow 1.x训练脚本迁移和使能混合精度记录
Tianyi Li 1997
华为云tensorflow华为人工智能深度学习python
简介基于TesorFlow1.x以Sess.run形式搭建入门级——手写数字分类网络,并迁移到华为自研NPUAscend910,同时使能混合精度。硬件介绍华为自研NPUAscend910,即昇腾910AI处理器(简称NPU),根据官方介绍,是在2019年发布的人工智能(AI)专用的神经网络处理器,其算力高达256T,最新款算力高达310T,是业界主流芯片算力的2倍。当前业界大多数训练脚本基于Ten
- 超级实用!一个基于python的简化版深度学习框架,包括深度学习神经网络的设计和深度学习模型的设计,适用于中小型项目的开发和实现
大懒猫软件
深度学习python神经网络numpypytorch人工智能
一、运用Python技术开发深度学习框架需要具备的基础知识总结开发一个基于Python的深度学习框架是一个复杂的任务,需要具备多方面的基础知识。以下是一些关键领域的总结,帮助你更好地准备和理解开发深度学习框架所需的知识。1.Python编程基础语法和数据结构:掌握Python的基本语法、数据类型(如列表、字典、元组等)和控制流(如循环、条件语句等)。函数和模块:理解函数的定义和使用,以及如何组织代
- 焦损函数(Focal Loss)与RetinaNet目标检测模型详解
人工智能
焦损函数(FocalLoss)与RetinaNet目标检测模型详解阅读时长:19分钟发布时间:2025-02-14近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目前,精度最高的目标检测器大多基于由R-CNN推广的两阶段方法,即对稀疏的候选目标位置集应用分类器。相比之下,在规则、密集的可
- 一个AI应用的开发、上线流程解析
終不似少年遊*
人工智能ai应用ckptonnx模型文件部署推理
目录1.模型文件格式1.1CheckPoint(ckpt)文件格式1.2.pth文件格式1.3.mindir文件格式1.4.onnx文件格式2.推理(Inference)2.1.pth(PyTorch模型格式)2.2.mindir(MindSpore模型格式)2.3.onnx(开放神经网络交换格式)2.4实际例子:自动驾驶系统中的推理模块3.APP与网页4.运维中心与本地部署SDK5.RAG(Re
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- LowCode 低代码平台集成 AI 大模型会产生怎样的化学反应?
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型架构师必知必会系列ChatGPT低代码人工智能
LowCode低代码平台集成AI大模型会产生怎样的化学反应?低代码平台(LowCodePlatform)是一种新型的应用开发方式,它将应用开发的过程简化为“拖拽组件、配置属性、生成代码”的方式,使得应用开发变得更加简单和快捷。而AI大模型(AIBigModel)则是一种利用深度学习技术构建的大规模神经网络,它可以对海量数据进行训练和预测,从而实现各种智能化的应用。本文将探讨低代码平台集成AI大模型
- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
E绵绵
Everything人工智能科技机器学习大模型pythonAIGC应用
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 26、深度学习-自学之路-NLP自然语言处理-理解加程序,怎么把现实的词翻译给机器识别。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、怎么能让机器能够理解我们的语言呢,我们可以利用神经网络干很多的事情,那么我们是不是也可以用神经元做自然语言处理呢,现在很多的实际应用已经说明了这个问题,可以这么做。那我们考虑一下该怎么做,首先我们应该把我们现实中的每一个单词都用一个词向量来进行表示:importnumpyasnponehots={}onehots['cat']=np.array([1,0,0,0])onehots['the']
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- 24、深度学习-自学之路-卷积神经网络
小宇爱
深度学习-自学之路深度学习cnn人工智能
一、你怎么理解卷积神经网络呢,我的理解是当你看一个东西的时候,你的眼睛距离图片越近,你看到的东西就越清晰,但是如果你看到的图片只是整个物体的一小部分,那么你将不知道你看到的物品是什么,因为关注整体更容易知道物品是什么。如果你保持一定的距离,你就会发现你可以看到物品更加的全貌一些,这样将方便你观察物品的类别。如果你距离的再远一点,你就会看到物品的轮廓,那么你将依据物品的轮廓去判断物品的类别。如果图片
- 深度学习-10-深度学习发展简介
皮皮冰燃
深度学习深度学习
2016年一月底,人工智能的研究领域,发生了两件大事。先是一月二十四号,MIT(麻省理工学院MassachusettsInstituteofTechnology)的教授,人工智能研究的先驱者,MarvinMinsky去世,享年89岁。极具讽刺意义的是,Minsky教授,一直不看好深度学习的概念。他曾在1969年出版了Perceptron(感知器)一书,指出了神经网络技术(就是深度学习的前身)的局限
- 【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)
天天科研工作室
故障诊断模型RIME-CNN-SVM故障诊断matlabcnn
【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章目录【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章介绍基本步骤代码分享运行结果参考资料文章介绍基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型是一种利用MATLAB编程环境,结合RIME-C
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 大脑神经网络与机器神经网络的区别
天机️灵韵
具身智能人工智能具身智能
大脑神经网络(生物神经网络)与机器神经网络(人工神经网络,ANN)虽然名称相似,但在结构、功能、学习机制等方面存在显著差异。以下是两者的主要区别:1.基础结构与组成大脑神经网络:由生物神经元(约860亿个)通过突触连接形成动态网络。神经元通过电化学信号(动作电位)和神经递质传递信息。具有高度的可塑性(突触可增强或削弱),支持终身学习和适应。网络结构复杂,包含分层(如大脑皮层)和并行处理机制。机器神
- 【SCI2区】雾凇优化算法RIME-CNN-GRU-Attention用电需求预测Matlab实现
matlab科研帮手
算法cnngru
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机
- RIME-CNN-SVM故障诊断
九亿AI算法优化工作室&
cnn支持向量机人工智能matlabpython
构建一个高效、准确的基于卷积神经网络(CNN)的电力系统故障识别与分类仿真系统,实现对电力系统故障的精准识别与分类。在这一模型中,CNN被用来执行故障数据的特征提取与抽象化处理,随后,这些经过抽象的特征会被传递给SVM模型,由SVM进一步执行分类与回归分析的任务,从而实现对故障类型的精确判定或故障严重程度的准确评估。为了进一步提升模型的泛化能力与预测精度,引入了雾凇算法来精细调整CNN与SVM的各
- 【论文解读】神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界
神经美学茂森
无痛入门神经网络神经网络网络人工智能
K.Hornik,M.Stinchcombe,andH.White.Multilayerfeed-forwardnetworksareuniversalapproximators.NeuralNet-works,2(5):359-366,1989论文解读神经网络就像“数学乐高积木”:多层前馈网络如何用简单函数拼接复杂世界第一节:通俗解释——万能近似定理的核心思想万能近似定理(UniversalAp
- 大模型参数规模解析:32B中的“B“代表什么?如何影响AI性能?
燃灯工作室
Ai人工智能
以下是优化后的技术笔记整理,包含关键知识点解析和行业应用案例:大模型参数规模解析:32B中的"B"代表什么?如何影响AI性能?一、参数单位解读B=Billion(十亿):在AI模型领域,"B"特指模型参数量的十亿级单位参数定义:神经网络中可调节的权重数值,决定模型的信息处理能力计算示例:32B=32×10⁹=320亿参数GPT-3175B=1750亿参数LLaMA-27B=70亿参数二、参数规模演
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少