- 【2025CVPR】SEC-Prompt:少样本增量学习中的语义互补提示模型详解
清风AI
生成对抗网络人工智能神经网络pcm目标跟踪深度学习计算机视觉
目录一、研究背景:少样本增量学习的挑战二、SEC-Prompt核心原理1.自适应层次化查询(AdaptiveHierarchicalQuery)2.语义互补提示机制(1)判别性提示(D-Prompt)(2)非判别性提示(ND-Prompt)3.训练策略创新(1)判别性提示聚类损失(2)ND-Prompt数据增强三、模型架构图解四、关键创新点五、实验结果对比1.ImageNet-R结果2.CUB20
- PNG图像压缩优化工具
丁金金_chihiro_修行
libpngPNG图像压缩优化工具
PNG图像压缩优化工具标题:PNG图像三重压缩优化系统介绍大纲1.工具概述基于libimagequant和libpng的高效PNG压缩工具提供三种不同级别的压缩算法支持保留透明度和色彩质量优化2.核心功能基础压缩(compress_png):标准量化处理中等压缩率和处理速度适合大多数常规用途优化压缩(compress_png_optimized):增强的量化参数设置更低的抖动级别更高的压缩级别(9
- 机器视觉通用平台之拟合直线工具类
小治视觉
c#算法visualstudio视觉检测
usingSystem;usingSystem.Collections.Generic;usingSystem.IO;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;usingCvBase;usingCWindowTool;usingHalconDotNet;namespaceCvImageTool{publicclass
- 仿 Twitter 点赞爱心动画效果 其中用到 animation
hackchen
html前端css
大概的原理,准备一张雪碧图,通过hover改变雪碧图的X坐标,达到动画的效果HTML:CSS:.heart{width:100px;height:100px;position:absolute;left:50%;top:50%;transform:translate(-50%,-50%);background:url("
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- 从0开始,手搓一个ViT
星光银河
学习python深度学习机器学习学习神经网络人工智能transformer
importtorchimporttorch.nnasnnimporttorch.nn.functionalasFclassPatchEmbedding(nn.Module):def__init__(self,img_size,patch_size,in_chans,embed_dim):super().__init__()assertimg_size%patch_size==0,"Imagedi
- 【保姆级教程】Cpolar+EasyImage搭建私人图床,看完就会!
文章目录1.前言2.EasyImage网站搭建2.1.EasyImage下载和安装2.2.EasyImage网页测试2.3.cpolar的安装和注册3.本地网页发布3.1.Cpolar云端设置3.2Cpolar内网穿透本地设置4.公网访问测试5.结语1.前言在数字内容创作领域,高效的视觉素材管理系统已成为提升生产效能的核心要素。当前创作者面临的关键困境在于:如何建立可自主掌控的图像存储架构?虽然云
- PYTHON表情识别常用函数
python表情识别常用函数函数read_image(image:Union[str,Path]):用于实现指定目录下的文件读取参数类型:表征图片文件路径的字符串函数draw_bounding_box(face_coordinates,image_array,color):用于绘制识别框参数类型:face_coordinates包含人脸左边坐标、顶端坐标、宽度、高度的list;图片数组image_
- 【ubuntu】如何构建自己的ubuntu内核
1.准备环境sudoaptupdatesudoaptinstallbuild-essentialfakerootdpkg-devkernel-packagelibncurses-devbisonflexlibssl-devlibelf-dev2.下载内核源码确认源码包,下载源码包。dpkg-S/boot/vmlinuz-$(uname-r)linux-image-5.15.0-46-generic
- docker windows 安装mysql:8.0.23
kobe_OKOK_
dockerwindowsmysql
dockerwindows安装mysql拉取镜像dockerpullmysql:8.0.23检查dockerimages创建容器dockerrun-p3306:3306--namemysql-vE:/docker_data_map/mysql/mysql-files:/var/lib/mysql-files-vE:/docker_data_map/mysql/conf:/etc/mysql-vE:
- Compose 高级用法详解——AI教你学Docker
LuckyLay
AI教你学Dockerdocker容器运维
3.6Compose高级用法详解DockerCompose除了常规的多服务编排,还支持一系列高级功能,如服务健康依赖、环境切换、配置模板化等。掌握这些技巧,能让你的多容器项目更健壮、更自动化、更易维护。一、depends_on的高级用法与启动顺序1.基本用法depends_on指定服务间的启动顺序,确保依赖的服务优先启动。services:web:depends_on:-dbdb:image:po
- 前端渲染大量图片的首屏加载优化方案
啃火龙果的兔子
开发DEMO前端
渲染大量图片时,首屏加载性能至关重要。以下是全面的优化方案:一、图片资源优化1.图片格式选择WebP格式:比JPEG小25-35%,支持透明AVIF格式:新一代格式,压缩率更高(Chrome/Firefox支持)渐进式JPEG:逐步加载显示SVG:适合图标/简单图形2.图片压缩使用工具压缩:TinyPNG、Squoosh、ImageOptim服务端自动压缩:Sharp(Node.js)、Pillo
- python图像识别哪些库_利用ImageAI库只需几行python代码实现目标检测
weixin_39667398
python图像识别哪些库
什么是目标检测目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization)+识别(Recognition)。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。通俗的说,ObjectDetection的目
- 小学期前端三件套学习(更新中)
第一阶段HTML基础结构页面标题页面内容常用内容标签文本类标签•~:标题(h1每个页面建议只用一次)•:段落•:行内文本容器•:加粗强调•:斜体强调媒体类标签•:图片(alt属性必须写)•:音频•:视频下拉框请选择选项1选项2选项3国家:--请选择--中国美国列表标签项目第一项超链接与锚点外部链接跳转到章节邮件链接表格![[Pastedimage20250628100803.png]]源码.tab
- 使用 Dockerfile 构建基于 .NET9 的跨平台基础镜像
官方基础镜像准备微软官方dotnetsdk基础镜像:dockerpullmcr.microsoft.com/dotnet/sdk:9.0拉取ubuntu镜像:dockerpullubuntu:24.04更多资源请参考:dotnetsdkimages,https://mcr.microsoft.com/en-us/artifact/mar/dotnet/sdk/tagsgithubdockerbui
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 在开发板I.MX6U上进行QT开发
路溪非溪
qt数据库系统架构
本文主要参考正点原子的QT开发手册,仅作为个人学习笔记使用。请用正点原子I.MX6U开发板进行实验,注意是用出厂系统,包括出厂内核(zImagemodules)、设备树(dtb)出厂文件系统!重要的事情得说三遍!本篇使用的是正点原子I.MX6U出厂系统进行实验!本篇使用的是正点原子I.MX6U出厂系统进行实验!本篇使用的是正点原子I.MX6U出厂系统进行实验!为什么强调是要使用默认的出厂系统?因为
- Skia图形库:绘制2D世界的核心组件
文章摘要Skia是Google开发的跨平台2D图形库,核心组件包括:SkCanvas(绘图入口)、SkPaint(画笔样式)、SkPath(几何形状)、SkImage/SkBitmap(图片处理)、SkFont/SkTypeface(文本渲染)以及SkSurface(画布载体)。支持CPU/GPU/PDF/SVG多种渲染后端,广泛应用于Chrome、Flutter等项目中,提供从基础绘图到高级特效
- python3多个图片合成一个pdf文件,生产使用验证过
少陽君
python3付费教程pdfpythonlinux
简单的示例代码,展示如何将多个图片合成为一个PDF文件。步骤1:安装依赖库首先,确保你已经安装了Pillow和reportlab库:pipinstallPillowreportlab步骤2:编写代码下面是一个Python脚本,它将指定目录中的所有图片文件合成一个PDF文件:fromPILimportImageimportosfromreportlab.pdfgenimportcanvasfromr
- Vue 图片加载失败显示默认图片
数字浪儿
vuevue.js前端javascript
方法一:通过onerror属性加载默认图片exportdefault{data(){return{img:'',//访问图片的ip地址defaultImg:`this.src='${require('@/assets/images/right/default-person.png')}'`,};},}方法二:通过@error方法加载默认图片exportdefault{data(){return{i
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 跟着AI学习C#之项目实战-电商平台 Day7
蓝胖子不会敲代码
C#学习c#开发语言
Day7:部署准备与优化✅今日目标:添加静态资源(CSS、JS、图片)优化页面样式与交互体验添加分页功能(商品、订单列表)配置生产环境设置(appsettings.Production.json)准备发布部署(dotnetpublish)功能概览类型内容静态资源wwwroot/css,wwwroot/js,wwwroot/images页面样式优化使用Bootstrap+自定义CSS增强用户体验分页
- uniapp image引用本地图片不显示问题
雪芽蓝域zzs
uniappuni-app
1.uniappimage引用本地图片不显示问题 在uniapp开发过程中采用image引入本地资源图片。1.1.相对路径和绝对路径问题 在UniApp中开发微信小程序时,引入图片时,相对路径和绝对路径可能会有一些差异。这差异主要涉及到小程序和UniApp框架的文件结构、路径解析规则以及开发环境的不同。1.1.1.相对路径: 相对路径是相对于当前文件的路径来引用资源的。例如,如果你的页面文件
- RabbitMQ实战:docker compose 搭建RabbitMQ
道法自然 实事求是
#MQrabbitmqdockerruby
目录一、yml文件准备二、启动RabbitMQ三、开启图形化管理界面四、验证参考资料一、yml文件准备docker-compose-rabbitmq.yml文件如下所示version:"3.8"services:rabbitmq:image:rabbitmq:3.11-alpinecontainer_name:rabbitmqrestart:alwaysvolumes:-/home/docker/
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- uniapp+vue写小程序页面,实现一张图片默认放大后,可以在容器内上下左右拖动查看
1.组件chargingimageViewerimport{ref,onMounted,computed}from'vue';constprops=defineProps({imageUrl:{type:String,required:true,},});//视图容器尺寸constVIEW_WIDTH=750;//微信小程序设计稿宽度constVIEW_HEIGHT=1800;//缩放限制cons
- 关于java通过背景图生成图片
a未来永远是个未知数
#java的图片处理javajavaintellij-ideamavenspringboot图像处理
目录对接部分(碎碎念,可跳过)引入本地jar包文件路径错误尝试解决方案开发部分获取字体的方法关于二维码的生成关于在背景图上添加内容关于在背景图上写字关于在背景图上叠加图片关于保存图片第一次尝试第二次尝试第三次尝试最终方案关于文件读取为MultipartFile类型关于BufferedImage转MultipartFile最近用到了需要生成图片的开发,作为一个没有接触过这个的后端,实在头秃,记录一下
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- CVPR2024 分割Segmentation相关论文37篇速览
木木阳
CVPR2024Segmentation分割论文
Paper1MFP:MakingFullUseofProbabilityMapsforInteractiveImageSegmentation摘要小结:最近的交互式分割算法中,将先前的概率图作为网络输入,以帮助当前分割轮次的预测。然而,尽管使用了先前的掩膜,概率图中包含的有用信息并没有很好地传播到当前预测中。在本文中,为了克服这一局限性,我们提出了一种新颖有效的基于点击的交互式图像分割算法MFP,
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><