- 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
cver123
数据集智慧城市人工智能目标跟踪计算机视觉目标检测
道路交通标志检测数据集已发布目标检测数据集合集(持续更新)道路交通标志检测数据集介绍数据集概览包含类别应用场景数据样本展示YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参数详解常用可选参数典型输出指标4.
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- C++ OpenCV4 实现鱼眼镜头矫正
朝风工作室
c++开发语言
一、为什么需要鱼眼镜头矫正?鱼眼镜头通过特殊的光学设计实现180°甚至更广的视野,广泛应用于全景相机、自动驾驶、安防监控等领域。但这种广角特性会引入严重的桶形畸变:直线边缘会向内弯曲(如图像边缘的门框变成弧线),物体尺寸在边缘区域会被拉伸。矫正的核心目标:将鱼眼镜头拍摄的畸变图像还原为接近人眼视觉的正常图像,便于后续的目标检测、图像拼接等处理。矫正前后效果对比(此处可插入图片)矫正前图像(鱼眼畸变
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化
计算机C9硕士_算法工程师
深度学习目标检测YOLO
深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化文章目录1.环境设置2.数据准备3.模型训练4.推理与结果可视化推理代码示例5.构建可视化界面PyQt5GUI代码示例总结以下文字及代码仅供参考。树冠检测数据集的训练及推理1使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化等方面进行详细介绍。1.环境设置首先确保
- 学习昇腾开发的第8天
派晟电子工作室
学习昇腾
1、目标检测样例:MindXSDK应用开发入门-Atlas200IDKA2开发者套件23.0.RC3-昇腾社区配置环境变量。:./usr/local/Ascend/mxVision/set_env.sh2、修改IP地址:以root用户名登录开发者套件。打开配置文件。Ubuntu操作系统:执行cd/etc/netplan命令进入“netplan”目录,执行ll命令查看目录下是否有类似“xxxx-ne
- DFT ATPG中core chain 和wrap chain区别
芯作者
DFT技术分享智能硬件硬件工程
在DFT(可测试性设计)中,CoreChain(核心扫描链)和WrapChain(封装扫描链)是两种不同的扫描链结构,分别服务于内部逻辑测试(Intest)和互连测试(Extest)。它们的核心区别如下:一、本质区别特性CoreChain(核心扫描链)WrapChain(封装扫描链)作用对象芯片内部逻辑单元(如寄存器、组合逻辑)芯片I/O端口(输入/输出引脚)测试目标检测内部故障(Stuck-At
- Python 人工智能Ai视觉模型 YOLOv8
GHY云端大师
pythonAI大模型视觉训练人工智能YOLO
YOLOv8简介:Python中的高效AI视觉模型YOLOv8是Ultralytics公司开发的最新目标检测模型,属于YOLO(YouOnlyLookOnce)系列的最新版本,以其高效和准确著称。核心特点高性能:在速度和精度之间取得了更好的平衡多功能:支持目标检测、实例分割和图像分类用户友好:简化了API设计,更易于使用可扩展性:支持从移动端到云端的多种部署场景主要改进更高的检测精度更快的推理速度
- AI人工智能目标检测在体育赛事中的应用
AI大模型应用之禅
人工智能目标检测计算机视觉ai
AI人工智能目标检测在体育赛事中的应用关键词:目标检测、计算机视觉、深度学习、体育分析、YOLO、运动员追踪、比赛统计摘要:本文深入探讨了AI目标检测技术在体育赛事中的创新应用。我们将从计算机视觉基础出发,详细分析目标检测的核心算法原理,特别是YOLO系列模型在运动员和球类追踪中的实现方式。文章包含完整的数学模型解释、Python实战项目演示,以及在实际体育场景中的应用案例分析。最后,我们展望了这
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- 深度解析YOLOv8:CSPHet卷积结构如何实现极致轻量化
向哆哆
YOLO创新涨点系列YOLOyolov8架构目标检测机器学习
文章目录一、背景介绍1.1YOLOv8的现状1.2降参数的必要性二、相关技术介绍2.1Dual思想2.2HetConv三、CSPHet结构设计3.1CSP模块的改进3.2结合HetConv3.3参数量的下降四、CSPHet的代码实现五、实验结果六、总结与展望在目标检测领域,YOLO系列算法一直以其卓越的速度和准确率受到广泛关注。随着深度学习技术的不断发展,研究人员不断探索如何进一步优化YOLO算法
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 深入研究YOLO算法改进中的注意力机制
周立-ric
本文还有配套的精品资源,点击获取简介:YOLO算法因其高效和准确而在实时目标检测领域备受青睐。注意力机制的引入对YOLO算法的性能提升起到了关键作用,尤其是通过关注图像关键区域来提高检测精度。注意力机制可以细分为通道注意力、空间注意力、自注意力、多尺度注意力和位置感知注意力等类型,每种类型的注意力机制都旨在优化模型对图像特征的理解和处理。本文档提供了一个包含实现这些注意力机制的代码的压缩包,并介绍
- 目标检测——YOLOX算法解读
论文:YOLOX:ExceedingYOLOSeriesin2021(2021.7.18)作者:ZhengGe,SongtaoLiu,FengWang,ZemingLi,JianSun链接:https://arxiv.org/abs/2107.08430代码:https://github.com/Megvii-BaseDetection/YOLOXYOLO系列算法解读:YOLOv1通俗易懂版解读、
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- (二十一)YOLO 全解析:从实时目标检测到多任务视觉智能
只有左边一个小酒窝
深度学习YOLO目标检测人工智能深度学习计算机视觉
1YOLO的发展脉络与技术定位1.1发展脉络YOLOv1(2015年):将目标检测重新定义为单一回归问题,把输入图像划分为S×S网格,每个网格单元负责预测固定数量的边界框及对应的类别概率,直接从像素回归预测物体的边界框坐标和类别概率。但存在小目标检测能力弱、定位精度不足等局限。YOLOv2(2016年):引入批量归一化、锚框、维度集群等技术,还提出了高分辨率分类器、直接位置预测、细粒度特征融合、多
- 使用预训练权重在YOLO模型上训练新数据集的完整指南
马里马里奥-
YOLO目标跟踪人工智能
使用预训练权重在YOLO模型上训练新数据集的完整指南引言在目标检测领域,迁移学习已成为提升模型性能的关键技术。本文将详细介绍如何利用预训练权重在YOLO(YouOnlyLookOnce)框架上训练自定义数据集,帮助您节省训练时间并提高检测精度。为什么使用预训练权重?加速收敛:预训练模型已学习通用特征,训练时间可缩短30%−70%30\%-70\%30%−70%小样本适配:在数据量有限时(n<100
- Python与C++检测框过滤差异分析
马里马里奥-
pythonc++开发语言人工智能
Python与C++检测框过滤差异分析在目标检测任务中,检测框过滤是后处理的关键环节。本文将从实现方式、性能表现和适用场景三个维度,对比分析Python与C++在检测框过滤中的差异。检测框过滤基本原理检测框过滤的核心是非极大值抑制(NMS)算法,其数学表达式为:NMS(B,S,θ)={bi∣∀bj,area(bi∩bj)area(bi∪bj)0:i=order[0]keep.append(i)xx
- YOLO理论知识简单了解
老农民编程
视觉与YoLo模型认知YOLO
目录前言一、YOLO是什么?以及核心思想?1、目标检测的本质与分类2、YOLO核心思想二、为什么使用YOLO,优势是什么?三、怎么使用YOLO模型?总结前言对YOLO模型的简单理解,对其进行记录。一、YOLO是什么?以及核心思想?YOLO(YouOnlyLookOnce)模型是一种用于实时目标检测的深度学习模型,所以首先需了解目标检测的概念。1、目标检测的本质与分类1.目标检测本质:目标在哪里:检
- 甜菜杂草目标检测数据集(猫脸码客第278期)
公众号:猫脸码客
开源数据集猫脸码客开源数据集甜菜杂草目标检测数据集
甜菜杂草检测一、甜菜田杂草种类甜菜田中常见多种杂草,以下为你详细介绍几种典型杂草:稗草植物属性:一年生草本植物,外形与稻子极为相似。形态特征:秆直立,表面光滑无毛。圆锥花序主轴带有角棱,质地粗糙;小穗密集生长在穗轴的一侧,几乎无柄或仅有极短柄。生长习性:花果期在7-10月,常生长于稻田、沼泽、沟渠旁以及低洼荒地等区域。狗尾草别称:又叫莠,因其穗形酷似狗尾巴而得名。形态特征:秆疏丛生,直立或者基部膝
- YOLOv12:以注意力为中心的物体检测
发呆小天才O.o
计算机视觉深度学习计算机视觉目标检测YOLOv12
1.概述实时目标检测已成为许多实际应用的关键,而Ultralytics的YOLO(YouOnlyLookOnce)系列一直是最先进的模型系列,在速度和准确率之间实现了稳健的平衡。注意力机制的低效性阻碍了其在YOLO等高速系统中的应用。YOLOv12旨在通过将注意力机制集成到YOLO框架中来改变这一现状。由于注意力机制效率低下,且计算复杂度高达平方级,内存访问操作效率低下,因此大多数目标检测架构传统
- 计算机视觉入门:OpenCV 人脸识别与手势控制系统全解析
高山仰星
计算机视觉opencv人工智能
1.引言计算机视觉(ComputerVision)是人工智能的重要领域,而OpenCV(OpenSourceComputerVisionLibrary)是最常用的开源计算机视觉库。它广泛用于图像处理、人脸识别、目标检测、手势识别等多个应用场景。本教程将详细介绍OpenCV的核心概念,并通过人脸识别的门禁系统和手势识别的智能控制系统这两个案例,帮助你掌握OpenCV的实际应用。2.OpenCV介绍与
- 基于YOLOv11的实时人脸表情识别系统(附完整资源 + PyQt5界面 + 训练代码)
霜天红叶
YOLOpythonpycharm人工智能算法cnn
引言在人机交互和情感计算领域,人脸表情识别一直是一个备受关注的研究方向。随着深度学习技术的快速发展,特别是目标检测和图像分类算法的进步,实时、高精度的人脸表情识别系统已经成为可能。本文将详细介绍一个基于YOLOv11的人脸表情识别系统,该系统不仅能够实现实时人脸检测,还能准确识别多种表情状态,具有广泛的应用前景。GitHub地址项目地址:https://github.com/AND-Q/Facia
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- 声波下的眼睛:用Python打造水下目标检测模型实战指南
Echo_Wish
Python算法Python笔记从零开始学Python人工智能python目标检测开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc