【JY】消能减震黏滞阻尼器的力学原理与应用

【JY】消能减震黏滞阻尼器的力学原理与应用_第1张图片

一、写在文前

消能阻尼器的基本力学原理主要体现在恢复力模型上,恢复力模型的建立对整体结构模型的动力分析起了便捷作用,便于指导工程实际应用。对于消能阻尼器通常选择以下本构进行模拟:

  • 软钢消能器和屈曲约束支撑可采用双线性模型或Wen模型

  • 摩擦消能器、铅消能器可采用理想弹塑性模型

  • 黏滞消能器可采用Maxwell模型

  • 黏弹性消能器可采用Kelvin模型

对于黏滞阻尼器的概念可看下:

【JY】结构概念之(消能减震黏滞阻尼器)

主要给大家讲解减震设计中的黏滞阻尼器相关的内容。

经过众多学者多年的研究和改进,都提出过黏滞阻尼器的恢复力模型,归纳起来,一般有线性模型、Kelvin模型、Maxwell模型、Wiechert模型四种类型。

【JY】消能减震黏滞阻尼器的力学原理与应用_第2张图片

二、黏滞阻尼器的计算理论简述

在黏滞阻尼器中,液体在密封油腔小孔内的高速流动,可采用流体动力学Navier-Stokes方程进行描述。对于理想的直阻尼孔,可考虑两种极端情况:

一种是惯性流,适用于液体黏度较低、间隙相对较大、液体在小孔流径较短或高流速的情况。在此情况下可将Navier方程进行简化,并考虑较低频率情况,此时阻尼力是由液体加速流过小孔通道产生的唯一的惯性力,在速度很高时阻尼力出力会急剧增大,因此惯性流不能用于实际工程。

【JY】消能减震黏滞阻尼器的力学原理与应用_第3张图片

另一种可归为黏性流,适用于液体黏度较高、相对间隙较小、液体在小孔流径较长或低流速的情况。此时阻尼器响应符合下面等式:

式中μ——液体黏度;Lp、Rp、h——表示活塞头的长度、半径以及间隙的宽度等几何特性。阻尼器的消能完全通过液体经过通道产生的黏性作用来实现。

相对于理想的长直孔来说,这种结构更为复杂。利用一系列特殊形状的孔道来改变速流特性,此时阻尼器产生的输出力与速度平方不再成比例,这种流体控制型小孔使提供的输出力与阻尼指数α相关,其中α为一个预先设定的系数,范围在0.3~2.0之间(Sap2000、Etabs的非线性黏滞阻尼单元的指数范围相同),而对于地震工程,这个系数的取值范围应在0.3~1.0之间。

因为此为了便于数学上的表达,可将上述式子化为阻尼力的大小与质点速度的指数形式成正比的黏性阻尼形式,其方向与运动的方向相反,这使结构的振动方程大大简化,可采用下式进行表述:

6a5731391d5b544a54cadaa84b74abe3.png

将正弦激励下体系振动的解:

a55a9edda2311088dc1097449f343866.png

(1)在线性模型中:

代入黏滞阻尼力的计算公式(假定阻尼指数α=1,即线性模型的油阻尼器),则可得到:

【JY】消能减震黏滞阻尼器的力学原理与应用_第4张图片

将上述方程进行整理可得黏滞阻尼其阻尼力的滞回曲线为一个椭圆方程

【JY】消能减震黏滞阻尼器的力学原理与应用_第5张图片

可见,线性黏滞阻尼其阻尼力的滞回曲线为一个椭圆方程,椭圆的面积也就是阻尼力循环一周所做的功:

【JY】消能减震黏滞阻尼器的力学原理与应用_第6张图片

线性模型滞回形状

当0<α<1时,可拓展得到非线性滞回模型(即串联刚度无穷大的Maxwell模型):

【JY】消能减震黏滞阻尼器的力学原理与应用_第7张图片

(当K=∞时,可得下图)

【JY】消能减震黏滞阻尼器的力学原理与应用_第8张图片

(2)在Kelvin模型中

对于带黏弹性质的黏滞阻尼器的模拟分析,考虑动态刚度的黏滞流体消能阻尼器理论模型可以采用Kelvin模型,即弹簧单元与阻尼单元为并联的形式,其中K是黏滞阻尼器的储存刚度,C是黏滞阻尼器的阻尼系数,α是黏滞阻尼器的阻尼指数,因此阻尼力的表达式为:

667f50b49ce855a9e12f8dadc4cf4924.png

将相应的位移函数带入可得到:

【JY】消能减震黏滞阻尼器的力学原理与应用_第9张图片

【JY】消能减震黏滞阻尼器的力学原理与应用_第10张图片

Kelvin模型滞回形状(当α=1时)

三、黏滞阻尼器的计算模拟分析

对于黏滞阻尼器的模拟分析,各软件均采用Maxwell模型,需要在软件中填写相应刚度K、阻尼系数C、阻尼指数α。(注意:如果要模拟Kelvin模型,如带粘弹性质的阻尼器,可采用Maxwell模型的单元 并联 弹性单元进行模拟。)

【JY】消能减震黏滞阻尼器的力学原理与应用_第11张图片

Maxwell模型

为验证软件原理,利用Matlab编写该本构进行计算分析,对比Sap2000、Etabs、Abaqus。采用质量点为10t,并联刚度100N/mm(组成Kelvin模型,目的是为了系统有一定整体刚度),阻尼系数为180N/mm^0.45,阻尼指数为0.45,采用以下振动信号进行单质点振动分析。

【JY】消能减震黏滞阻尼器的力学原理与应用_第12张图片

在Sap2000中:

在Sap2000中,仅需要注意单位,填写阻尼系数C、阻尼指数α,刚度K填写为阻尼系数C的100~1000倍(或者根据阻尼器外筒刚度进行填写)

【JY】消能减震黏滞阻尼器的力学原理与应用_第13张图片

在Etabs中:

在Etabs中填写黏滞阻尼器需要非常小心,虽然求解器和Sap2000一样,都是SapFire,但是Etabs在填写黏滞阻尼器时候,阻尼系数C会自动根据(N、mm)换算单位。因此,建议选择单位N、mm下进行阻尼器填写,因为此时单位不容易出错。

【JY】消能减震黏滞阻尼器的力学原理与应用_第14张图片

在ABAQUS中:

在Abaqus中,采用非线性链接对黏滞阻尼器进行模拟,其中阻尼里输入的是速度和力,可以通过《阻尼器吨位设计分析V3.0》插件自动生成速度、力的数据,对黏滞阻尼器进行模拟。

【JY】消能减震黏滞阻尼器的力学原理与应用_第15张图片

插件和模型案例下载地址

【JY】消能减震黏滞阻尼器的力学原理与应用_第16张图片

【JY】消能减震黏滞阻尼器的力学原理与应用_第17张图片

结果对比:

通过Matlab程序对照,可以看出各个软件的原理均符合该力学模型(Maxwell模型),各软件的结果(位移、加速度、滞回曲线)对比十分吻合。其中Etabs和Sap2000的数据一摸一样,说明这两款软件均采用相同的计算内核(SapFire)。

【JY】消能减震黏滞阻尼器的力学原理与应用_第18张图片

【JY】消能减震黏滞阻尼器的力学原理与应用_第19张图片

(完)

欢迎关注,下期更加精彩~

往期精彩

#性能分析

【JY】基于性能的抗震设计浅析(一)

【JY】基于性能的抗震设计浅析(二)

【JY】浅析消能附加阻尼比

【JY】近断层结构设计策略分析与讨论

【JY】浅析各动力求解算法及其算法数值阻尼(人工阻尼)

理念

【JY|体系】结构概念设计之(结构体系概念)

【JY|理念】结构概念设计之(设计理念进展)

【JY】有限单元分析的常见问题及单元选择

【JY】结构动力学之显隐式

【JY】浅谈结构设计

【JY】浅谈混凝土损伤模型及Abaqus中CDP的应用

【JY】结构概念设计之(隔震概念设计)

【JY】结构概念设计之(消能减震黏滞阻尼器)

#概念机理

【JY】基于Ramberg-Osgood本构模型的双线性计算分析

【JY】结构动力学初步-单质点结构的瞬态动力学分析

【JY】从一根悬臂梁说起

【JY】反应谱的详解与介绍

【JY】结构瑞利阻尼与经济订货模型

【JY】主成分分析与振型分解

【JY】浅谈结构多点激励之概念机理(上)

【JY】浅谈结构多点激励之分析方法(下)

【JY】板壳单元的分析详解

【JY】橡胶支座的简述和其力学性能计算

【JY】振型求解之子空间迭代

【JY】橡胶支座精细化模拟与有限元分析注意要点

【JY】推开土木工程振型求解之兰索斯法(Lanczos法)的大门

【JY】基于OpenSees和Sap2000静力动力计算案例分析

【JY】建筑结构施加地震波的方法与理论机理

#软件讨论

【JY】复合材料分析利器—内聚力单元

【JY】SDOF计算教学软件开发应用分享

【JY】Abaqus案例—天然橡胶隔震支座竖(轴)向力学性能

【JY】Abaqus6.14-4如何关联fortran?

【JY】如何利用python来编写GUI?

【JY】如何解决MATLAB GUI编程软件移植运行问题?

【JY】浅谈结构分析与设计软件

【JY|STR】求解器之三维结构振型分析

【JY】SignalData软件开发应用分享

【JY】基于Matlab的双线性滞回代码编写教程

#其他

【JY】位移角还是有害位移角?

【JY】如何利用python来编写GUI?

【JY】今日科普之BIM

【JY】消能减震黏滞阻尼器的力学原理与应用_第20张图片

~关注未来更精彩~

你可能感兴趣的:(python,机器学习,人工智能,算法,数据分析)