基本原理:
根据当前激光帧的时间戳和上一帧激光帧的时间戳,找到当前激光帧和上一帧激光帧时间重叠的激光点,滤除时间重复的点。
在Local_Trajectory_builder.cc中,AddRangeData的对象的类型是RangeDataCollator,作用是将时间上未对齐的雷达数据,进行对齐,滤掉重叠的点
class RangeDataCollator {
public:
explicit RangeDataCollator(
const std::vector<std::string>& expected_range_sensor_ids)
: expected_sensor_ids_(expected_range_sensor_ids.begin(),
expected_range_sensor_ids.end()) {}
// If timed_point_cloud_data has incomplete intensity data, we will fill the
// missing intensities with kDefaultIntensityValue.
// 添加未对齐的雷达数据
sensor::TimedPointCloudOriginData AddRangeData(
const std::string& sensor_id,
sensor::TimedPointCloudData timed_point_cloud_data);
private:
sensor::TimedPointCloudOriginData CropAndMerge();
const std::set<std::string> expected_sensor_ids_;
// Store at most one message for each sensor.
// 存放sensor_id和数据
std::map<std::string, sensor::TimedPointCloudData> id_to_pending_data_;
common::Time current_start_ = common::Time::min();
common::Time current_end_ = common::Time::min();
constexpr static float kDefaultIntensityValue = 0.f;
};
} // namespace mapping
} // namespace cartographer
auto synchronized_data =
range_data_collator_.AddRangeData(sensor_id, unsynchronized_data);
if (synchronized_data.ranges.empty()) {
LOG(INFO) << "Range data collator filling buffer.";
return nullptr;
}
点击AddRangeData
sensor::TimedPointCloudOriginData RangeDataCollator::AddRangeData(
const std::string& sensor_id,
sensor::TimedPointCloudData timed_point_cloud_data) {
// 检查,是否是期望的sensor_id
CHECK_NE(expected_sensor_ids_.count(sensor_id), 0);
timed_point_cloud_data.intensities.resize(
timed_point_cloud_data.ranges.size(), kDefaultIntensityValue);
// TODO(gaschler): These two cases can probably be one.
// id_to_pending_data_是什么?查看,map类型
// 如果之前有数据
if (id_to_pending_data_.count(sensor_id) != 0) {
current_start_ = current_end_;
// When we have two messages of the same sensor, move forward the older of
// the two (do not send out current).
// 当前帧的current_end_赋值当前帧的时间
current_end_ = id_to_pending_data_.at(sensor_id).time;
auto result = CropAndMerge();
// 处理后的数据放入id_to_pending_data_中,当前帧取代上一帧
id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data));
return result;
}
// 如果没有数据,直接赋值
id_to_pending_data_.emplace(sensor_id, std::move(timed_point_cloud_data));
if (expected_sensor_ids_.size() != id_to_pending_data_.size()) {
return {};
}
// 并计算上一帧的时间戳,赋值current_end_
current_start_ = current_end_;
// We have messages from all sensors, move forward to oldest.
common::Time oldest_timestamp = common::Time::max();
for (const auto& pair : id_to_pending_data_) {
oldest_timestamp = std::min(oldest_timestamp, pair.second.time);
}
// 最后一个点的绝对时间戳
current_end_ = oldest_timestamp;
return CropAndMerge();
}
点击CropAndMerge()函数
sensor::TimedPointCloudOriginData RangeDataCollator::CropAndMerge() {
sensor::TimedPointCloudOriginData result{current_end_, {}, {}};
bool warned_for_dropped_points = false;
// 遍历所有的点
for (auto it = id_to_pending_data_.begin();
it != id_to_pending_data_.end();) {
// 获取数据
sensor::TimedPointCloudData& data = it->second;
const sensor::TimedPointCloud& ranges = it->second.ranges;
const std::vector<float>& intensities = it->second.intensities;
// 根据时间戳计算要删除的点的终点,也是要保留数据的起点
auto overlap_begin = ranges.begin();
while (overlap_begin < ranges.end() &&
data.time + common::FromSeconds((*overlap_begin).time) <
current_start_) {
++overlap_begin;
}
// 计算要保留的数据的终点,一般情况下,终点即为ranges.end()
auto overlap_end = overlap_begin;
while (overlap_end < ranges.end() &&
data.time + common::FromSeconds((*overlap_end).time) <=
current_end_) {
++overlap_end;
}
if (ranges.begin() < overlap_begin && !warned_for_dropped_points) {
LOG(WARNING) << "Dropped " << std::distance(ranges.begin(), overlap_begin)
<< " earlier points.";
warned_for_dropped_points = true;
}
// Copy overlapping range.根据要保留的数据的起点终点,拷贝数据到result
if (overlap_begin < overlap_end) {
std::size_t origin_index = result.origins.size();
result.origins.push_back(data.origin);
const float time_correction =
static_cast<float>(common::ToSeconds(data.time - current_end_));
auto intensities_overlap_it =
intensities.begin() + (overlap_begin - ranges.begin());
result.ranges.reserve(result.ranges.size() +
std::distance(overlap_begin, overlap_end));
for (auto overlap_it = overlap_begin; overlap_it != overlap_end;
++overlap_it, ++intensities_overlap_it) {
sensor::TimedPointCloudOriginData::RangeMeasurement point{
*overlap_it, *intensities_overlap_it, origin_index};
// current_end_ + point_time[3]_after == in_timestamp +
// point_time[3]_before
point.point_time.time += time_correction;
result.ranges.push_back(point);
}
}
// Drop buffered points until overlap_end.
if (overlap_end == ranges.end()) {
it = id_to_pending_data_.erase(it);
} else if (overlap_end == ranges.begin()) {
++it;
} else {
const auto intensities_overlap_end =
intensities.begin() + (overlap_end - ranges.begin());
data = sensor::TimedPointCloudData{
data.time, data.origin,
sensor::TimedPointCloud(overlap_end, ranges.end()),
std::vector<float>(intensities_overlap_end, intensities.end())};
++it;
}
}
// 所有数据重新按照时间戳排序
std::sort(result.ranges.begin(), result.ranges.end(),
[](const sensor::TimedPointCloudOriginData::RangeMeasurement& a,
const sensor::TimedPointCloudOriginData::RangeMeasurement& b) {
return a.point_time.time < b.point_time.time;
});
return result;
}
参考链接: https://blog.csdn.net/yeluohanchan/article/details/108674859.