傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

1、欧拉公式证明

欧拉公式: e i θ = cos ⁡ θ + i sin ⁡ θ {e^{i\theta }} = \cos \theta + i\sin \theta eiθ=cosθ+isinθ , 其中, i = − 1 i = \sqrt { - 1} i=1
欧拉公式在控制理论和动态系统分析当中,起到了非常重要的作用。
下面用一种简单的方式证明一下欧拉公式。
证明:
设函数: f ( θ ) = e i θ cos ⁡ θ + i sin ⁡ θ f\left( \theta \right) = \frac{{{e^{i\theta }}}}{{\cos \theta + i\sin \theta }} f(θ)=cosθ+isinθeiθ

f ( θ ) f\left( \theta \right) f(θ)求导,复合函数求导: ( u v ) ′ = u ′ v − u v ′ v 2 {\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v - uv'}}{{{v^2}}} (vu)=v2uvuv

f ′ ( θ ) = i e i θ ( cos ⁡ θ + i sin ⁡ θ ) − e i θ ( − sin ⁡ θ + i cos ⁡ θ ) ( cos ⁡ θ + i sin ⁡ θ ) 2 = i e i θ cos ⁡ θ − e i θ sin ⁡ θ + e i θ sin ⁡ θ − e i θ i cos ⁡ θ ( cos ⁡ θ + i sin ⁡ θ ) 2 = 0 \begin{aligned} f'\left( \theta \right) &= \frac{{i{e^{i\theta }}\left( {\cos \theta + i\sin \theta } \right) - {e^{i\theta }}\left( { - \sin \theta + i\cos \theta } \right)}}{{{{\left( {\cos \theta + i\sin \theta } \right)}^2}}} \\ &= \frac{{i{e^{i\theta }}\cos \theta - {e^{i\theta }}\sin \theta + {e^{i\theta }}\sin \theta - {e^{i\theta }}i\cos \theta }}{{{{\left( {\cos \theta + i\sin \theta } \right)}^2}}}\\ & = 0 \end{aligned} f(θ)=(cosθ+isinθ)2ieiθ(cosθ+isinθ)eiθ(sinθ+icosθ)=(cosθ+isinθ)2ieiθcosθeiθsinθ+eiθsinθeiθicosθ=0
f ′ ( θ ) = 0 ⇒ f ( θ ) f'\left( \theta \right) = 0 \Rightarrow f\left( \theta \right) f(θ)=0f(θ)是常数。

f ( θ ) = f ( 0 ) = e i 0 cos ⁡ 0 + i sin ⁡ 0 = 1 1 + 0 = 1 f\left( \theta \right) = f\left( 0 \right) = \frac{{{e^{i0}}}}{{\cos 0 + i\sin 0}} = \frac{1}{{1 + 0}} = 1 f(θ)=f(0)=cos0+isin0ei0=1+01=1

e i θ cos ⁡ θ + i sin ⁡ θ = 1 ⇒ e i θ = cos ⁡ θ + i sin ⁡ θ \frac{{{e^{i\theta }}}}{{\cos \theta + i\sin \theta }} = 1 \Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta cosθ+isinθeiθ=1eiθ=cosθ+isinθ

证明完毕!

2、用欧拉公式证明三角函数的和差公式

sin ⁡ ( α + β ) = sin ⁡ ( α ) cos ⁡ ( β ) + cos ⁡ ( α ) sin ⁡ ( β ) ( 1 ) sin ⁡ ( α − β ) = sin ⁡ ( α ) cos ⁡ ( β ) − cos ⁡ ( α ) sin ⁡ ( β ) ( 2 ) cos ⁡ ( α + β ) = cos ⁡ ( α ) cos ⁡ ( β ) − sin ⁡ ( α ) sin ⁡ ( β ) ( 3 ) cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) ( 4 ) \begin{array}{l} \sin \left( {\alpha + \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) + \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 1 \right)\\ \sin \left( {\alpha - \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) - \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 2 \right)\\ \cos \left( {\alpha + \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) - \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 3 \right)\\ \cos \left( {\alpha - \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) + \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 4 \right) \end{array} sin(α+β)=sin(α)cos(β)+cos(α)sin(β)(1)sin(αβ)=sin(α)cos(β)cos(α)sin(β)(2)cos(α+β)=cos(α)cos(β)sin(α)sin(β)(3)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)(4)

根据欧拉公式 e i θ = cos ⁡ θ + i sin ⁡ θ {e^{i\theta }} = \cos \theta + i\sin \theta eiθ=cosθ+isinθ

e i ( α + β ) = cos ⁡ ( α + β ) + i sin ⁡ ( α + β ) e i α = cos ⁡ α + i sin ⁡ α e i β = cos ⁡ β + i sin ⁡ β e i ( α + β ) = e i α ⋅ e i β = ( cos ⁡ α + i sin ⁡ α ) ( cos ⁡ β + i sin ⁡ β ) = cos ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β i + sin ⁡ α cos ⁡ β i − sin ⁡ α sin ⁡ β = ( cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β ) + i ( cos ⁡ α sin ⁡ β + sin ⁡ α cos ⁡ β ) = cos ⁡ ( α + β ) + i sin ⁡ ( α + β ) \begin{aligned} {e^{i\left( {\alpha + \beta } \right)}} &= \cos \left( {\alpha + \beta } \right) + i\sin \left( {\alpha + \beta } \right)\\ {e^{i\alpha }} &= \cos \alpha + i\sin \alpha \\ {e^{i\beta }} &= \cos \beta + i\sin \beta \\ {e^{i\left( {\alpha + \beta } \right)}} &= {e^{i\alpha }} \cdot {e^{i\beta }} = \left( {\cos \alpha + i\sin \alpha } \right)\left( {\cos \beta + i\sin \beta } \right)\\ &= \cos \alpha \cos \beta + \cos \alpha \sin \beta i + \sin \alpha \cos \beta i - \sin \alpha \sin \beta \\ &= \left( {\cos \alpha \cos \beta - \sin \alpha \sin \beta } \right) + i\left( {\cos \alpha \sin \beta + \sin \alpha \cos \beta } \right)\\ &= \cos \left( {\alpha + \beta } \right) + i\sin \left( {\alpha + \beta } \right) \end{aligned} ei(α+β)eiαeiβei(α+β)=cos(α+β)+isin(α+β)=cosα+isinα=cosβ+isinβ=eiαeiβ=(cosα+isinα)(cosβ+isinβ)=cosαcosβ+cosαsinβi+sinαcosβisinαsinβ=(cosαcosβsinαsinβ)+i(cosαsinβ+sinαcosβ)=cos(α+β)+isin(α+β)

两个复数相等的充要条件是它们的实部和虚部分别相等,因此
cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β sin ⁡ ( α + β ) = cos ⁡ α sin ⁡ β + sin ⁡ α cos ⁡ β \begin{array}{l} \cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \sin \left( {\alpha + \beta } \right) = \cos \alpha \sin \beta + \sin \alpha \cos \beta \end{array} cos(α+β)=cosαcosβsinαsinβsin(α+β)=cosαsinβ+sinαcosβ

(3) 式 和(1)式证毕。

利用上述证明过程,如法炮制
e i ( α − β ) = cos ⁡ ( α − β ) + i sin ⁡ ( α − β ) e i α = cos ⁡ α + i sin ⁡ α e i β = cos ⁡ β + i sin ⁡ β \begin{aligned} {e^{i\left( {\alpha - \beta } \right)}} &= \cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)\\ {e^{i\alpha }} &= \cos \alpha + i\sin \alpha \\ {e^{i\beta }} &= \cos \beta + i\sin \beta \end{aligned} ei(αβ)eiαeiβ=cos(αβ)+isin(αβ)=cosα+isinα=cosβ+isinβ

e i ( α − β ) = e i α ⋅ e i ( − β ) = ( cos ⁡ α + i sin ⁡ α ) [ cos ⁡ ( − β ) + i sin ⁡ ( − β ) ] = cos ⁡ α cos ⁡ ( − β ) + cos ⁡ α sin ⁡ ( − β ) i + sin ⁡ α cos ⁡ ( − β ) i − sin ⁡ α sin ⁡ ( − β ) \begin{aligned} {e^{i\left( {\alpha - \beta } \right)}} &= {e^{i\alpha }} \cdot {e^{i\left( { - \beta } \right)}} = \left( {\cos \alpha + i\sin \alpha } \right)\left[ {\cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right)} \right]\\ &= \cos \alpha \cos \left( { - \beta } \right) + \cos \alpha \sin \left( { - \beta } \right)i \\&+ \sin \alpha \cos \left( { - \beta } \right)i - \sin \alpha \sin \left( { - \beta } \right) \end{aligned} ei(αβ)=eiαei(β)=(cosα+isinα)[cos(β)+isin(β)]=cosαcos(β)+cosαsin(β)i+sinαcos(β)isinαsin(β)

因为 cos ⁡ ( x ) \cos \left( x \right) cos(x)是偶函数 , cos ⁡ ( − β ) = cos ⁡ ( β ) \cos \left( { - \beta } \right) = \cos \left( \beta \right) cos(β)=cos(β) sin ⁡ ( x ) \sin \left( x \right) sin(x)是奇函数, sin ⁡ ( − β ) = − sin ⁡ ( β ) \sin \left( { - \beta } \right) = - \sin \left( \beta \right) sin(β)=sin(β)。所以

e i ( α − β ) = cos ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β i + sin ⁡ α cos ⁡ β i + sin ⁡ α sin ⁡ β = ( cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β ) + i ( sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β ) = cos ⁡ ( α − β ) + i sin ⁡ ( α − β ) \begin{aligned} {e^{i\left( {\alpha - \beta } \right)}} &= \cos \alpha \cos \beta - \cos \alpha \sin \beta i + \sin \alpha \cos \beta i + \sin \alpha \sin \beta \\ &= \left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right) + i\left( {\sin \alpha \cos \beta - \cos \alpha \sin \beta } \right)\\ &= \cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right) \end{aligned} ei(αβ)=cosαcosβcosαsinβi+sinαcosβi+sinαsinβ=(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)=cos(αβ)+isin(αβ)

因此可得

cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β \begin{array}{l} \cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \sin \left( {\alpha - \beta } \right) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{array} cos(αβ)=cosαcosβ+sinαsinβsin(αβ)=sinαcosβcosαsinβ

(4) 式 和(2)式证毕。

3、总结和扩展

三角函数的和差公式如下
sin ⁡ ( α + β ) = sin ⁡ ( α ) cos ⁡ ( β ) + cos ⁡ ( α ) sin ⁡ ( β ) ( 1 ) sin ⁡ ( α − β ) = sin ⁡ ( α ) cos ⁡ ( β ) − cos ⁡ ( α ) sin ⁡ ( β ) ( 2 ) cos ⁡ ( α + β ) = cos ⁡ ( α ) cos ⁡ ( β ) − sin ⁡ ( α ) sin ⁡ ( β ) ( 3 ) cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) ( 4 ) \begin{array}{l} \sin \left( {\alpha + \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) + \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 1 \right)\\ \sin \left( {\alpha - \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) - \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 2 \right)\\ \cos \left( {\alpha + \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) - \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 3 \right)\\ \cos \left( {\alpha - \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) + \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 4 \right) \end{array} sin(α+β)=sin(α)cos(β)+cos(α)sin(β)(1)sin(αβ)=sin(α)cos(β)cos(α)sin(β)(2)cos(α+β)=cos(α)cos(β)sin(α)sin(β)(3)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)(4)

根据三角函数的和差公式,我们推导出积化和差的公式
(1)+(2)可得 sin ⁡ ( α + β ) + sin ⁡ ( α − β ) = 2 sin ⁡ ( α ) cos ⁡ ( β ) ⇒ sin ⁡ ( α ) cos ⁡ ( β ) = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right) = 2\sin \left( \alpha \right)\cos \left( \beta \right) \Rightarrow \sin \left( \alpha \right)\cos \left( \beta \right) = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right)} \right] sin(α+β)+sin(αβ)=2sin(α)cos(β)sin(α)cos(β)=21[sin(α+β)+sin(αβ)]
(1)-(2)可得 sin ⁡ ( α + β ) − sin ⁡ ( α − β ) = 2 cos ⁡ ( α ) sin ⁡ ( β ) ⇒ cos ⁡ ( α ) sin ⁡ ( β ) = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right) = 2\cos \left( \alpha \right)\sin \left( \beta \right) \Rightarrow \cos \left( \alpha \right)\sin \left( \beta \right) = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right)} \right] sin(α+β)sin(αβ)=2cos(α)sin(β)cos(α)sin(β)=21[sin(α+β)sin(αβ)]
(3)+(4)可得 cos ⁡ ( α + β ) + cos ⁡ ( α − β ) = 2 cos ⁡ ( α ) cos ⁡ ( β ) ⇒ cos ⁡ ( α ) cos ⁡ ( β ) = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right) = 2\cos \left( \alpha \right)\cos \left( \beta \right) \Rightarrow \cos \left( \alpha \right)\cos \left( \beta \right) = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right] cos(α+β)+cos(αβ)=2cos(α)cos(β)cos(α)cos(β)=21[cos(α+β)+cos(αβ)]
(4)- (3)可得 cos ⁡ ( α − β ) − cos ⁡ ( α + β ) = 2 sin ⁡ ( α ) sin ⁡ ( β ) ⇒ sin ⁡ ( α ) sin ⁡ ( β ) = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \cos \left( {\alpha - \beta } \right) - \cos \left( {\alpha + \beta } \right) = 2\sin \left( \alpha \right)\sin \left( \beta \right) \Rightarrow \sin \left( \alpha \right)\sin \left( \beta \right) = \frac{1}{2}\left[ {\cos \left( {\alpha - \beta } \right) - \cos \left( {\alpha + \beta } \right)} \right] cos(αβ)cos(α+β)=2sin(α)sin(β)sin(α)sin(β)=21[cos(αβ)cos(α+β)]
同理:积化和差公式能够反向推导和差公式,下面就不赘述了

4、附一个不完全证明

下面给出一种仅适用于 α < 9 0 o \alpha < {90^o} α<90o β < 9 0 o \beta < {90^o} β<90o α + β < 9 0 o \alpha + \beta < {90^o} α+β<90o 的几何证明方法。 这东西很妙。
傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明_第1张图片
根据矩形的对边长度相等,就能得到

{ sin ⁡ ( α + β ) = sin ⁡ ( α ) cos ⁡ ( β ) + cos ⁡ ( α ) sin ⁡ ( β ) ( 1 ) { cos ⁡ ( α ) cos ⁡ ( β ) = cos ⁡ ( α + β ) + sin ⁡ ( α ) sin ⁡ ( β ) ⇒ cos ⁡ ( α + β ) = cos ⁡ ( α ) cos ⁡ ( β ) − sin ⁡ ( α ) sin ⁡ ( β ) ( 3 ) \begin{array}{l} \left\{ {\sin \left( {\alpha + \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) + \cos \left( \alpha \right)\sin \left( \beta \right)} \right.{\rm{ }}\left( 1 \right)\\ \left\{ \begin{array}{l} \cos \left( \alpha \right)\cos \left( \beta \right) = \cos \left( {\alpha + \beta } \right) + \sin \left( \alpha \right)\sin \left( \beta \right)\\ \Rightarrow \cos \left( {\alpha + \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) - \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 3 \right) \end{array} \right. \end{array} {sin(α+β)=sin(α)cos(β)+cos(α)sin(β)(1){cos(α)cos(β)=cos(α+β)+sin(α)sin(β)cos(α+β)=cos(α)cos(β)sin(α)sin(β)(3)

根据函数的奇偶性质,可以推出另外两个差公式

sin ⁡ [ α + ( − β ) ] = sin ⁡ ( α ) cos ⁡ ( − β ) + cos ⁡ ( α ) sin ⁡ ( − β ) \sin \left[ {\alpha + \left( { - \beta } \right)} \right] = \sin \left( \alpha \right)\cos \left( { - \beta } \right) + \cos \left( \alpha \right)\sin \left( { - \beta } \right) sin[α+(β)]=sin(α)cos(β)+cos(α)sin(β)

因为 cos ⁡ ( x ) \cos \left( x \right) cos(x)是偶函数 , cos ⁡ ( − β ) = cos ⁡ ( β ) \cos \left( { - \beta } \right) = \cos \left( \beta \right) cos(β)=cos(β) sin ⁡ ( x ) \sin \left( x \right) sin(x)是奇函数, sin ⁡ ( − β ) = − sin ⁡ ( β ) \sin \left( { - \beta } \right) = - \sin \left( \beta \right) sin(β)=sin(β)。所以

sin ⁡ ( α − β ) = sin ⁡ ( α ) cos ⁡ ( β ) − cos ⁡ ( α ) sin ⁡ ( β ) ( 2 ) \sin \left( {\alpha - \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) - \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 2 \right) sin(αβ)=sin(α)cos(β)cos(α)sin(β)(2)

同理 cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) ( 4 ) \cos \left( {\alpha - \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) + \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 4 \right) cos(αβ)=cos(α)cos(β)+sin(α)sin(β)(4)

系列学习链接:欢迎大家点赞、收藏、留言讨论。

傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换

傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导

傅里叶级数与傅里叶变换_Part7_离散傅里叶变换的性质

你可能感兴趣的:(傅里叶变换,傅里叶分析,傅里叶变换,数学基础,傅里叶级数)