torch.optim.Adam() 函数用法

Adam: A method for stochastic optimization

 Adam是通过梯度的一阶矩和二阶矩自适应的控制每个参数的学习率的大小。

torch.optim.Adam() 函数用法_第1张图片

 adam的初始化

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0, amsgrad=False):
Args:
    params (iterable): iterable of parameters to optimize or dicts defining
        parameter groups
    lr (float, optional): learning rate (default: 1e-3)
    betas (Tuple[float, float], optional): coefficients used for computing
        running averages of gradient and its square (default: (0.9, 0.999))
    eps (float, optional): term added to the denominator to improve
        numerical stability (default: 1e-8)
    weight_decay (float, optional): weight decay (

你可能感兴趣的:(深度学习,机器学习,人工智能)