黑马点评项目Redis实现分布式锁

上文我们提到了基于Redis的秒杀券抢购业务的实现,在单体系统下式完全能够满足的,但是随着业务的扩展,需要进行集群部署,因此仍然会出现一人多单现象。

Redis解决优惠券秒杀_兜兜转转m的博客-CSDN博客

本文基于Redis实现分布式锁,解决在集群部署下出现的一人多单现象。

【分析】

为什么在集群部署下会出现一人多单问题呢?

因为在集群部署下,每一个项目都有自己的JVM,那么就都有字节锁监视器,因此在访问时仍然会出现一人多单,解决方法,我们设置全局唯一的锁监视器,那么任何项目都要访问这个全局唯一的锁监视器,因此就可以解决一人多单问题。

黑马点评项目Redis实现分布式锁_第1张图片

分布式锁

基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

黑马点评项目Redis实现分布式锁_第2张图片

 

Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:

    • 互斥:确保只能有一个线程获取锁

    • 非阻塞:尝试一次,成功返回true,失败返回false

  • 释放锁:

    • 手动释放

    • 超时释放:获取锁时添加一个超时时间

核心思路:

我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可(或者立即退出)

黑马点评项目Redis实现分布式锁_第3张图片

 

实现分布式锁版本一

定义接口

黑马点评项目Redis实现分布式锁_第4张图片

 

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性

private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {
    // 获取线程标示
    String threadId = Thread.currentThread().getId()
    // 获取锁
    Boolean success = stringRedisTemplate.opsForValue()
            .setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
    return Boolean.TRUE.equals(success);
}
  • 释放锁逻辑

SimpleRedisLock

释放锁,防止删除别人的锁

public void unlock() {
    //通过del删除锁
    stringRedisTemplate.delete(KEY_PREFIX + name);
}
  @Override
    public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象(新增代码)
        SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        //获取锁对象
        boolean isLock = lock.tryLock(1200);
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
    }

【分析代码】可能会出现的问题-锁误删现象,当线程1获得锁对象,此时业务被阻塞了,锁超时释放了,然后线程2看到锁释放了,因此就获得了新锁,然后线程1又完成任务,直接把锁释放了,此时其他线程就又获得了锁,可能会出现多线程安全问题。

黑马点评项目Redis实现分布式锁_第5张图片

解决方法:判断锁是否是自己的,如果是自己的再释放。 

【业务逻辑】

黑马点评项目Redis实现分布式锁_第6张图片

【代码实现】

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
   // 获取线程标示
   String threadId = ID_PREFIX + Thread.currentThread().getId();
   // 获取锁
   Boolean success = stringRedisTemplate.opsForValue()
                .setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
   return Boolean.TRUE.equals(success);
}

public void unlock() {
    // 获取线程标示
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    // 获取锁中的标示
    String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
    // 判断标示是否一致
    if(threadId.equals(id)) {
        // 释放锁
        stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}

 【分析代码】出现问题,判断锁和释放锁不是原子性的,因此在极端情况下仍然会出现多线程问题

解决方法:采用lua脚本进行改写。

接下来我们来回一下我们释放锁的逻辑:

释放锁的业务流程是这样的

  • 获取锁中的线程标示
  • 判断是否与指定的标示(当前线程标示)一致
  • 如果一致则释放锁(删除)
  • 如果不一致则什么都不做

如果用Lua脚本来表示则是这样的:

最终我们操作redis的拿锁比锁删锁的lua脚本就会变成这样

-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
  -- 一致,则删除锁
  return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0

最终加锁和释放锁的逻辑如下:

private static final DefaultRedisScript UNLOCK_SCRIPT;
    static {
        UNLOCK_SCRIPT = new DefaultRedisScript<>();
        UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
        UNLOCK_SCRIPT.setResultType(Long.class);
    }

public void unlock() {
    // 调用lua脚本
    stringRedisTemplate.execute(
            UNLOCK_SCRIPT,
            Collections.singletonList(KEY_PREFIX + name),
            ID_PREFIX + Thread.currentThread().getId());
}

你可能感兴趣的:(Redis,redis,分布式,数据库)