模型在深度学习中扮演着重要的角色,好的模型极大地促进了深度学习的发展进步,比如CNN的提出解决了图像、视频处理中的诸多问题,RNN/LSTM模型解决了序列数据处理的问题,GNN在图模型上发挥着重要的作用。因此,在PyTorch进阶操作的第一部分中,我们首先来学习PyTorch模型相关的内容。
对应模块为nn.Sequential()。
当模型的前向计算为简单串联各个层的计算时, Sequential 类可以通过更加简单的方式定义模型。它可以接收一个子模块的有序字典(OrderedDict) 或者一系列子模块作为参数来逐一添加到 Module 实例,而模型的前向计算就是将这些实例按添加的顺序逐⼀计算。
定义
class MySequential(nn.Module):
from collections import OrderedDict
def __init__(self, *args):
super(MySequential, self).__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
for key, module in args[0].items():
self.add_module(key, module) # add_module方法会将module添加进self._modules(一个OrderedDict)
else: # 传入的是一些Module
for idx, module in enumerate(args):
self.add_module(str(idx), module)
def forward(self, input):
# self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历
for module in self._modules.values():
input = module(input)
return input
Sequential定义模型时只需要将模型的层按序排列起来即可,根据层名的不同,排列分为两种方式:
直接排列
import torch.nn as nn
net = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
print(net)
使用OrderedDict
import collections
import torch.nn as nn
net2 = nn.Sequential(collections.OrderedDict([
('fc1', nn.Linear(784, 256)),
('relu1', nn.ReLU()),
('fc2', nn.Linear(256, 10))
]))
print(net2)
可以看到,使用Sequential定义模型的好处在于简单、易读,不需要再写forward,因为顺序已经定义好了。但使用Sequential也会使得模型定义丧失灵活性,比如需要在模型中间加入一个外部输入时就不适合用Sequential的方式实现。使用时需根据实际需求加以选择。
对应模块为nn.ModuleList()。
ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行append和extend操作。同时,子模块或层的权重也会自动添加到网络中。
net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1]) # 类似List的索引访问
print(net)
注意:nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起。ModuleList中元素的先后顺序并不代表其在网络中的真实位置顺序,需要经过forward函数指定各个层的先后顺序后才算完成了模型的定义。具体实现时用for循环即可完成:
class model(nn.Module):
def __init__(self, ...):
self.modulelist = ...
...
def forward(self, x):
for layer in self.modulelist:
x = layer(x)
return x
对应模块为nn.ModuleDict()。
ModuleDict和ModuleList的作用类似,只是ModuleDict能够更方便地为神经网络的层添加名称。
net = nn.ModuleDict({
'linear': nn.Linear(784, 256),
'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
Sequential适用于快速验证结果,因为已经明确了要用哪些层,直接写一下就好了,不需要同时写__init__和forward;
ModuleList和ModuleDict在某个完全相同的层需要重复出现多次时,非常方便实现,可以”一行顶多行“;
当我们需要之前层的信息的时候,比如 ResNets 中的残差计算,当前层的结果需要和之前层中的结果进行融合,一般使用 ModuleList/ModuleDict 比较方便。
上一节中我们介绍了怎样定义PyTorch的模型,其中给出的示例都是用torch.nn中的层来完成的。这种定义方式易于理解,在实际场景下不一定利于使用。当模型的深度非常大时,使用Sequential定义模型结构需要向其中添加几百行代码,使用起来甚不方便。
对于大部分模型结构(比如ResNet、DenseNet等),我们仔细观察就会发现,虽然模型有很多层, 但是其中有很多重复出现的结构。考虑到每一层有其输入和输出,若干层串联成的“模块”也有其输入和输出,如果我们能将这些重复出现的层定义为一个“模块”,每次只需要向网络中添加对应的模块来构建模型,这将会极大便利模型构建的过程。
本节我们将以U-Net为例,介绍如何构建模型块,以及如何利用模型块快速搭建复杂模型。
U-Net是分割 (Segmentation) 模型的杰作,在以医学影像为代表的诸多领域有着广泛的应用。U-Net模型结构如下图所示,通过残差连接结构解决了模型学习中的退化问题,使得神经网络的深度能够不断扩展。
从上图可以得知,U-Net模型具有非常好的对称性。模型从上到下分为若干层,每层由左侧和右侧两个模型块组成,每侧的模型块与其上下模型块之间有连接;同时位于同一层左右两侧的模型块之间也有连接,称为“Skip-connection”。此外还有输入和输出处理等其他组成部分。由于模型的形状非常像英文字母的“U”,因此被命名为“U-Net”。
U-Net模型块主要包括:
1)每个子块内部的两次卷积(Double Convolution)
2)左侧模型块之间的下采样连接,即最大池化(Max pooling)
3)右侧模型块之间的上采样连接(Up sampling)
4)输出层的处理
除模型块外,还有模型块之间的横向连接,输入和U-Net底部的连接等计算,这些单独的操作可以通过forward函数来实现。
在使用PyTorch实现U-Net模型时,我们不必把每一层按序排列显式写出,这样太麻烦且不宜读,一种比较好的方法是先定义好模型块,再定义模型块之间的连接顺序和计算方式。就好比装配零件一样,我们先装配好一些基础的部件,之后再用这些可以复用的部件得到整个装配体。
这里的基础部件对应上一节分析的四个模型块,根据功能我们将其命名为:DoubleConv, Down, Up, OutConv。下面给出U-Net中模型块的PyTorch 实现:
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
使用写好的模型块,可以非常方便地组装U-Net模型。可以看到,通过模型块的方式实现了代码复用,整个模型结构定义所需的代码总行数明显减少,代码可读性也得到了提升。
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
除了自己构建PyTorch模型外,还有另一种应用场景:我们已经有一个现成的模型,但该模型中的部分结构不符合我们的要求,为了使用模型,我们需要对模型结构进行必要的修改。随着深度学习的发展和PyTorch越来越广泛的使用,有越来越多的开源模型可以供我们使用,很多时候我们也不必从头开始构建模型。因此,掌握如何修改PyTorch模型就显得尤为重要。
以pytorch官方视觉库torchvision预定义好的模型ResNet50为例,探索如何修改模型的某一层或者某几层。我们先看看模型的定义:
import torchvision.models as models
net = models.resnet50()
print(net)
这里模型结构是为了适配ImageNet预训练的权重,因此最后全连接层(fc)的输出节点数是1000。
假设我们要用这个resnet模型去做一个10分类的问题,就应该修改模型的fc层,将其输出节点数替换为10。另外,我们觉得一层全连接层可能太少了,想再加一层。可以做如下修改:
from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
('relu1', nn.ReLU()),
('dropout1',nn.Dropout(0.5)),
('fc2', nn.Linear(128, 10)),
('output', nn.Softmax(dim=1))
]))
net.fc = classifier
这里的操作相当于将模型(net)最后名称为“fc”的层替换成了名称为“classifier”的结构,该结构是我们自己定义的。这里使用了第一节介绍的Sequential+OrderedDict的模型定义方式。至此,我们就完成了模型的修改,现在的模型就可以去做10分类任务了。
有时候在模型训练中,除了已有模型的输入之外,还需要输入额外的信息。比如在CNN网络中,我们除了输入图像,还需要同时输入图像对应的其他信息,这时候就需要在已有的CNN网络中添加额外的输入变量。基本思路是:将原模型添加输入位置前的部分作为一个整体,同时在forward中定义好原模型不变的部分、添加的输入和后续层之间的连接关系,从而完成模型的修改。
我们以torchvision的resnet50模型为基础,任务还是10分类任务。不同点在于,我们希望利用已有的模型结构,在倒数第二层增加一个额外的输入变量add_variable来辅助预测。具体实现如下:
class Model(nn.Module):
def __init__(self, net):
super(Model, self).__init__()
self.net = net
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.fc_add = nn.Linear(1001, 10, bias=True)
self.output = nn.Softmax(dim=1)
def forward(self, x, add_variable):
x = self.net(x)
x = torch.cat((self.dropout(self.relu(x)), add_variable.unsqueeze(1)),1)
x = self.fc_add(x)
x = self.output(x)
return x
这里的实现要点是通过torch.cat实现了tensor的拼接。torchvision中的resnet50输出是一个1000维的tensor,我们通过修改forward函数(配套定义一些层),先将2048维的tensor通过激活函数层和dropout层,再和外部输入变量"add_variable"拼接,最后通过全连接层映射到指定的输出维度10。
另外这里对外部输入变量"add_variable"进行unsqueeze操作是为了和net输出的tensor保持维度一致,常用于add_variable是单一数值 (scalar) 的情况,此时add_variable的维度是 (batch_size, ),需要在第二维补充维数1,从而可以和tensor进行torch.cat操作。
之后对我们修改好的模型结构进行实例化,就可以使用了:
import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()
另外别忘了,训练中在输入数据的时候要给两个inputs:
outputs = model(inputs, add_var)
有时候在模型训练中,除了模型最后的输出外,我们需要输出模型某一中间层的结果,以施加额外的监督,获得更好的中间层结果。基本思路是修改模型定义中forward函数的return变量。
我们依然以resnet50做10分类任务为例,在已经定义好的模型结构上,同时输出1000维的倒数第二层和10维的最后一层结果。具体实现如下:
class Model(nn.Module):
def __init__(self, net):
super(Model, self).__init__()
self.net = net
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.fc1 = nn.Linear(1000, 10, bias=True)
self.output = nn.Softmax(dim=1)
def forward(self, x, add_variable):
x1000 = self.net(x)
x10 = self.dropout(self.relu(x1000))
x10 = self.fc1(x10)
x10 = self.output(x10)
return x10, x1000
之后对我们修改好的模型结构进行实例化,就可以使用了:
import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()
另外别忘了,训练中在输入数据后会有两个outputs:
out10, out1000 = model(inputs, add_var)
在前面几节的内容中,我们介绍了如何构建和修改PyTorch模型。本节我们来讨论PyTorch如何保存和读取训练好的模型。
另外,在很多场景下我们都会使用多GPU训练。这种情况下,模型会分布于各个GPU上,模型的保存和读取与单GPU训练情景下是否有所不同?
PyTorch存储模型主要采用pkl,pt,pth三种格式,就使用层面来说没有区别。
一个PyTorch模型主要包含两个部分:模型结构和权重。其中模型是继承nn.Module的类,权重的数据结构是一个字典(key是层名,value是权重向量)。存储也由此分为两种形式:存储整个模型(包括结构和权重),只存储模型权重。
from torchvision import models
model = models.resnet152(pretrained=True)
# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict, save_dir)
对于PyTorch而言,pt, pth和pkl三种数据格式均支持模型权重和整个模型的存储,因此使用上没有差别。
PyTorch中将模型和数据放到GPU上有两种方式——.cuda()和.to(device),本节后续内容针对前一种方式进行讨论。如果要使用多卡训练的话,需要对模型使用torch.nn.DataParallel。示例如下:
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 如果是多卡改成类似0,1,2
model = model.cuda() # 单卡
model = torch.nn.DataParallel(model).cuda() # 多卡
之后我们把model对应的layer名称打印出来看一下,可以观察到差别在于多卡并行的模型每层的名称前多了一个“module”。
多卡模型的层名:
这种模型表示的不同可能会导致模型保存和加载过程中需要处理一些矛盾点,下面对各种可能的情况做分类讨论。
由于训练和测试所使用的硬件条件不同,在模型的保存和加载过程中可能因为单GPU和多GPU环境的不同带来模型不匹配等问题。这里对PyTorch框架下单卡/多卡下模型的保存和加载问题进行排列组合(=4),样例模型是torchvision中预训练模型resnet152。
单卡保存+单卡加载
在使用os.envision命令指定使用的GPU后,即可进行模型保存和读取操作。注意这里即便保存和读取时使用的GPU不同也无妨。
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model.cuda()
# 保存+读取整个模型
torch.save(model, save_dir)
loaded_model = torch.load(save_dir)
loaded_model.cuda()
# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model.cuda()
单卡保存+多卡加载
这种情况的处理比较简单,读取单卡保存的模型后,使用nn.DataParallel函数进行分布式训练设置即可:
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model.cuda()
# 保存+读取整个模型
torch.save(model, save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
loaded_model = torch.load(save_dir)
loaded_model = nn.DataParallel(loaded_model).cuda()
# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model = nn.DataParallel(loaded_model).cuda()
多卡保存+单卡加载
这种情况下的核心问题是:如何去掉权重字典键名中的"module",以保证模型的统一性。
对于加载整个模型,直接提取模型的module属性即可:
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存+读取整个模型
torch.save(model, save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
loaded_model = torch.load(save_dir)
loaded_model = loaded_model.module
对于加载模型权重,有以下几种思路:
去除字典里的module麻烦,往model里添加module(推荐)
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model = nn.DataParallel(loaded_model).cuda()
loaded_model.state_dict = loaded_dict
这样即便是单卡,也可以开始训练了(相当于分布到单卡上)
遍历字典去除module
from collections import OrderedDict
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
loaded_dict = torch.load(save_dir)
new_state_dict = OrderedDict()
for k, v in loaded_dict.items():
name = k[7:] # module字段在最前面,从第7个字符开始就可以去掉module
new_state_dict[name] = v #新字典的key值对应的value一一对应
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = new_state_dict
loaded_model = loaded_model.cuda()
使用replace操作去除module
loaded_model = models.resnet152()
loaded_dict = torch.load(save_dir)
loaded_model.load_state_dict({k.replace('module.', ''): v for k, v in loaded_dict.items()})
多卡保存+多卡加载
由于是模型保存和加载都使用的是多卡,因此不存在模型层名前缀不同的问题。但多卡状态下存在一个device(使用的GPU)匹配的问题,即保存整个模型时会同时保存所使用的GPU id等信息,读取时若这些信息和当前使用的GPU信息不符则可能会报错或者程序不按预定状态运行。具体表现为以下两点:
读取整个模型再使用nn.DataParallel进行分布式训练设置
这种情况很可能会造成保存的整个模型中GPU id和读取环境下设置的GPU id不符,训练时数据所在device和模型所在device不一致而报错。
读取整个模型而不使用nn.DataParallel进行分布式训练设置
这种情况可能不会报错,测试中发现程序会自动使用设备的前n个GPU进行训练(n是保存的模型使用的GPU个数)。此时如果指定的GPU个数少于n,则会报错。在这种情况下,只有保存模型时环境的device id和读取模型时环境的device id一致,程序才会按照预期在指定的GPU上进行分布式训练。
相比之下,读取模型权重,之后再使用nn.DataParallel进行分布式训练设置则没有问题。因此多卡模式下建议使用权重的方式存储和读取模型:
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存+读取模型权重,强烈建议!!
torch.save(model.state_dict(), save_dir)
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model = nn.DataParallel(loaded_model).cuda()
loaded_model.state_dict = loaded_dict
如果只有保存的整个模型,也可以采用提取权重的方式构建新的模型:
# 读取整个模型
loaded_whole_model = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_whole_model.state_dict
loaded_model = nn.DataParallel(loaded_model).cuda()
另外,上面所有对于loaded_model修改权重字典的形式都是通过赋值来实现的,在PyTorch中还可以通过"load_state_dict"函数来实现:
loaded_model.load_state_dict(loaded_dict)
OS: Ubuntu 20.04 LTS GPU: GeForce RTX 2080 Ti (x3)
通过本次学习,我们可以掌握以下内容:
熟悉PyTorch中模型定义的三种方式
读懂GitHub上千奇百怪的写法
根据自己的需要灵活选取模型定义方式
将简单层构建成具有特定功能的模型块
利用模型块构建复杂网络
在已有模型的基础上:修改模型若干层;添加额外输入;添加额外输出
PyTorch模型的存储格式
PyTorch存储模型的方式
单卡与多卡训练下模型的保存与加载方法
[1]https://zhuanlan.zhihu.com/p/64990232
[2]https://github.com/milesial/Pytorch-UNet
[3]https://zhuanlan.zhihu.com/p/371090724