Open3D点云处理

Open3D点云处理


一、Open3D

Open3D is an open-source library that supports rapid development of software that deals with 3D data. The Open3D frontend exposes a set of carefully selected data structures and algorithms in both C++ and Python. The backend is highly optimized and is set up for parallelization.

Open3D是一个支持3D数据处理软件快速开发的开源库,在前端提供了一组精挑细选的C++和Python数据结构与算法。并且在后端高度优化且支持并行化。

核心要素包括:

  • 3D数据结构
  • 3D数据处理算法
  • 场景重建
  • 3D可视化
  • 3D机器学习等

Python版快速安装

需要的环境为:

  • OS:Ubuntu 18.04+、macOS 10.15+、Windows 10(64-bit)
  • Python: 3.6-3.9
  • Pre-packages: pip and conda
# Install
pip install open3d

# Verify installation
python -c "import open3d as o3d; print(o3d.__version__)"

# Python API
python -c "import open3d as o3d; \
           mesh = o3d.geometry.TriangleMesh.create_sphere(); \
           mesh.compute_vertex_normals(); \
           o3d.visualization.draw(mesh, raw_mode=True)"

# Open3D CLI
open3d example visualization/draw

二、Open3D点云加载与显示

2.1 点云读取

Open3D提供了直接从文件中读取点云数据的API:

open3d.io.read_point_cloud(filename, format='auto', remove_nan_points=False, \
remove_infinite_points=False, print_progress=False)

Parameters

  • filename (str) – 文件路径
  • format (str,optional,default=‘auto’) – 文件的格式,默认是auto,将影响如何读取文件
  • remove_nan_points (bool*,* optional*,* default=False) – 是否移除值为nan的点
  • remove_infinite_points (bool*,* optional*,* default=False) – 是否移除值为inf的点
  • print_progress (bool*,* optional*,* default=False) – 当该值为True时,将会在可视化时出现一个过程条

Return

  • open3d.geometry.PointCloud对象

其中,format参数的可选参数为:

格式 描述
xyz 每一行包含[x,y,z]
xyzn 每一行包含[x,y,z,nx,ny,nz]
xyzrgb 每一行包括[x,y,z,r,g,b] rgb为[0,1]之间的float类型
pts 第一行表示点数,之后每行包括[x,y,z,i,r,g,b] rgb为unit8类型
ply ply文件
pcd pcd文件

我们来尝试读取一下数据

import open3d as o3d

pcd=o3d.io.read_point_cloud(r"Cloud.pcd")
print(pcd)

'''
PointCloud with 2001009 points.
'''
# 此时点云数据已经被读入了

当然,对于某些格式稀奇古怪的,我们也可以通过转成ndarray然后再进行读取:

import numpy as np
import open3d as o3d

# 读取到ndarray
data=np.genfromtxt(r'modelnet40_normal_resampled\airplane\airplane_0001.txt',delimiter=",")
# 创建PointCloud类
pcd=o3d.geometry.PointCloud()
pcd.points=o3d.utility.Vector3dVector(data[:,:3])
print(pcd)

'''
PointCloud with 10000 points.
'''

关于PointCloud的属性,主要有以下四类:

  • colors: 颜色信息,在可视化时能为几何体赋予视觉信息
  • covariances: 协方差
  • normal: 法向量
  • points: 位置信息

2.2 点云可视化

在Open3D中,点云可视化其中之一的API为:

draw_geometries(geometry_list, window_name=’Open3D’, width=1920,\
 height=1080, left=50, top=50, point_show_normal=False,\
  mesh_show_wireframe=False, mesh_show_back_face=False,\
   lookat, up, front, zoom)

Parameters

  • geometry_list (List[open3d.geometry.Geometry]) – 需要可视化的几何体列表.
  • window_name (str, optional, default=‘Open3D’) – 窗口名称
  • width (int, optional, default=1920) – 窗口宽度
  • height (int, optional, default=1080) – 窗口高度
  • left (int, optional, default=50) – 窗口左边界
  • top (int, optional, default=50) – 窗口顶部边界
  • point_show_normal (bool, optional, default=False) – 是否展示法向量
  • mesh_show_wireframe (bool, optional, default=False) – 是否可视化网格线框
  • mesh_show_back_face (bool, optional, default=False) – 同时可视化格网三角形背部
  • **lookat ** (numpy.ndarray[float64[3,1]]) – 相机注视向量
  • up (numpy.ndarray[float64[3,1]]) – 相机的上方向向量
  • front (numpy.ndarray[float64[3,1]]) – 相机的前矢量
  • zoom (float) – 相机缩放倍数

Returns

  • None

我们来尝试一下:

o3d.visualization.draw_geometries([pcd])

Open3D点云处理_第1张图片

显示法向量:

pcd.normals=o3d.utility.Vector3dVector(data[:,3:])
o3d.visualization.draw_geometries([pcd],window_name="o3d",width=1920,height=1080,
                                  left=50,top=50,point_show_normal=True)

Open3D点云处理_第2张图片

看起来跟毛毛虫一样…

提供了一组用户交互指令:

-- Mouse view control --
  Left button + drag         : Rotate.
  Ctrl + left button + drag  : Translate.
  Wheel button + drag        : Translate.
  Shift + left button + drag : Roll.
  Wheel                      : Zoom in/out.

-- Keyboard view control --
  [/]          : Increase/decrease field of view.
  R            : Reset view point.
  Ctrl/Cmd + C : Copy current view status into the clipboard.
  Ctrl/Cmd + V : Paste view status from clipboard.

-- General control --
  Q, Esc       : Exit window.
  H            : Print help message.
  P, PrtScn    : Take a screen capture.
  D            : Take a depth capture.
  O            : Take a capture of current rendering settings.

Open3D点云处理_第3张图片
Open3D点云处理_第4张图片

也可以指定点云的颜色:

pcd.colors=o3d.utility.Vector3dVector(data[:,3:])

Open3D点云处理_第5张图片

参数geometry_list支持多个空间集合对象:

def read_txt(path):
    data=np.genfromtxt(path,delimiter=",")
    pcd=o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(data[:, :3])
    pcd.normals = o3d.utility.Vector3dVector(data[:, 3:])
    pcd.colors = o3d.utility.Vector3dVector(data[:, 3:])
    return pcd

path=r'\airplane'
pcd1=read_txt(path+r"\airplane_0001.txt")
pcd2=read_txt(path+r"\airplane_0012.txt")
o3d.visualization.draw_geometries([pcd1,pcd2],window_name="o3d",width=1920,height=1080,
                                  left=50,top=50,mesh_show_back_face=True)

Open3D点云处理_第6张图片

o3d提供了自动计算法向量的API:

radius=0.01 # 搜索半径
max_nn=30 # 邻域内用于估算法线的最大点数
# 执行KD树搜索
pcd1.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius,max_nn))
o3d.visualization.draw_geometries([pcd1],window_name="o3d",width=1920,height=1080,
                                  left=50,top=50,point_show_normal=True)
# 同样能用KD树构建协方差表

2.3 点云保存

API如下:

open3d.io.write_point_cloud(filename, pointcloud, write_ascii=False, compressed=False, print_progress=False)

Parameters

  • filename (str) – 文件路径
  • pointcloud (open3d.geometry.PointCloud) – 点云对象
  • write_ascii (booloptional,default=False) – 该参数为True时,将会写入ASCII码,否则一般写入二进制文件
  • compressed (bool,optional,default=False) – 是否以压缩格式进行输出
  • print_progress (bool,optional,default=False) –是否在控制台打印一个进度条

Returns

  • bool
o3d.io.write_point_cloud("02.pcd",pcd2,write_ascii=True)

此时可以看到已经将读取的点云写入到文件中了。

Open3D点云处理_第7张图片


三、Open3D点云常见操作

3.1 体素下采样

体素下采样(Voxel downsampling)采用规则体素格网从输入点云中创建分布均匀的下采样点云,是许多点云处理任务的预处理步骤。该算法主要分为两步:

  • 创建指定大小(分辨率)的体素网络
  • 当点云中至少有一个点落在某个体素内,则认为该体素被占用,体素的颜色(属性)是该体素内所有点的平均值
print("Downsample the point cloud with a voxel of 0.05")
downpcd = pcd1.voxel_down_sample(voxel_size=0.05)
o3d.visualization.draw_geometries([downpcd])
print("The number of PC is : ",pcd1)
print("The number of downPC is : ",downpcd)


'''
Downsample the point cloud with a voxel of 0.05
The number of PC is :  PointCloud with 10000 points.
The number of downPC is :  PointCloud with 1389 points.

Downsample the point cloud with a voxel of 0.005
The number of PC is :  PointCloud with 10000 points.
The number of downPC is :  PointCloud with 9825 points.
'''

Open3D点云处理_第8张图片
Open3D点云处理_第9张图片

3.2 点云正态估计

在交互页面,可以通过N查看点法线,+,-控制法线长度。

作为点云的基本操作之一,点云正态估计通过指定算法参数估测每个点可能的法向量,estimate_normals查找指定搜索半径内的临近点,通过这些临近点的协方差计算其主轴,从而估计法向量。正常情况下会产生两个方向相反的法向量,在不知道几何体的全局结构下,两者都可以是正确的。Open3D会尝试调整法线的方向,使其与原始法线对齐。

print("Recompute the normal of the downsampled point cloud")
downpcd.estimate_normals(
    search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([downpcd],
                                  zoom=0.3412,
                                  front=[0.4257, -0.2125, -0.8795],
                                  lookat=[2.6172, 2.0475, 1.532],
                                  up=[-0.0694, -0.9768, 0.2024],
                                  point_show_normal=True)

Open3D点云处理_第10张图片

如果想要访问顶点法线的话,可以直接通过索引获取:

print("Print a normal vector of the 0th point")
print(downpcd.normals[0])

'''
Print a normal vector of the 0th point
[ 0.99552379 -0.03798043  0.08654404]
'''

也可以将其转为numpy数组:

print("Print the normal vectors of the first 10 points")
print(np.asarray(downpcd.normals)[:10, :])

'''
Print the normal vectors of the first 10 points
[[ 0.99552379 -0.03798043  0.08654404]
 [-0.00180642 -0.97317626  0.23005372]
 [-0.03311035  0.95990356 -0.27836821]
 [-0.18007638 -0.98233851 -0.05082867]
 [ 0.03201738 -0.92865206  0.36956763]
 [-0.09411325  0.9584897  -0.26914715]
 [-0.00804695  0.97716482 -0.21233029]
 [-0.95046739 -0.20590633  0.2328397 ]
 [ 0.58566868  0.7923609   0.17075245]
 [-0.19273423 -0.87191173  0.45013714]]
'''

3.3 点云裁剪

Open3D的点云裁剪需要通过read_selection_polygon_volume读取多边形选择区域的json文件,接着通过.crop_point_cloud()方法过滤出点。

print("Load a polygon volume and use it to crop the original point cloud")
demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)
o3d.visualization.draw_geometries([chair],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

Open3D点云处理_第11张图片
Open3D点云处理_第12张图片

3.4 绘制点云

paint_uniform_color可以将点云颜色绘制成同一的色彩。注意颜色是在[0,1]之间的float类型。

print("Paint chair")
chair.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([chair],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

Open3D点云处理_第13张图片

3.5 选择点云

在Open3D中,可以通过点云索引来进行筛选。select_by_index也可以通过修改invert方法进行反向选取。

inner=pcd1.select_by_index([i for i in range(len(pcd1.points)) if i%2==0])
outer=pcd1.select_by_index([i for i in range(10)],invert=True)
o3d.visualization.draw_geometries([pcd1])
o3d.visualization.draw_geometries([inner])
o3d.visualization.draw_geometries([outer])

Open3D点云处理_第14张图片
Open3D点云处理_第15张图片
Open3D点云处理_第16张图片


四、点云数据计算

4.1 点云距离

Open3D提供了compute_point_cloud_distance方法,能够计算源点云到目标点云的最近距离,该方法也能用于计算两点云之间的切角距离。

demo_crop_data = o3d.data.DemoCropPointCloud()
pcd = o3d.io.read_point_cloud(demo_crop_data.point_cloud_path)
vol = o3d.visualization.read_selection_polygon_volume(demo_crop_data.cropped_json_path)
chair = vol.crop_point_cloud(pcd)

# 从原始图像到裁剪图像中最近点的距离
dists=pcd.compute_point_cloud_distance(chair)
dists=np.asarray(dists)
ind=np.where(dists>0.1)[0]
pcd_without_chair = pcd.select_by_index(ind)
o3d.visualization.draw_geometries([pcd_without_chair],
                                  zoom=0.3412,
                                  front=[0.4257, -0.2125, -0.8795],
                                  lookat=[2.6172, 2.0475, 1.532],
                                  up=[-0.0694, -0.9768, 0.2024])

Open3D点云处理_第17张图片

4.2 边界体积

与其几何类型相似,PointCloud也具有边界体积。

aabb = chair.get_axis_aligned_bounding_box()
aabb.color = (1, 0, 0)
obb = chair.get_oriented_bounding_box()
obb.color = (0, 1, 0)
o3d.visualization.draw_geometries([chair, aabb, obb],
                                  zoom=0.7,
                                  front=[0.5439, -0.2333, -0.8060],
                                  lookat=[2.4615, 2.1331, 1.338],
                                  up=[-0.1781, -0.9708, 0.1608])

Open3D点云处理_第18张图片

4.3 凸包计算

点云凸包是包含所有点的最小凸集,在Open3D中,可采用compute_convex_hull计算。

bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)
mesh.compute_vertex_normals()

pcl = mesh.sample_points_poisson_disk(number_of_points=2000)
hull, _ = pcl.compute_convex_hull()
hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull)
hull_ls.paint_uniform_color((1, 0, 0))
o3d.visualization.draw_geometries([pcl, hull_ls])

Open3D点云处理_第19张图片

4.4 DBSCAN聚类

DBSCAN是Ester在1996年提出的一种聚类算法,Open3D中也提供了该算法的APIpc.cluster_dbscan(eps,min_points,print_progress)eps定义了簇的半径距离,而min_points定义形成簇的最小点数量。返回是一个标签对象,若值为-1则表示噪声。

import matplotlib.pyplot as plt
ply_point_cloud = o3d.data.PLYPointCloud()
pcd = o3d.io.read_point_cloud(ply_point_cloud.path)

with o3d.utility.VerbosityContextManager(
        o3d.utility.VerbosityLevel.Debug) as cm:
    labels = np.array(
        pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))

max_label = labels.max()
print(f"point cloud has {max_label + 1} clusters")
colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
colors[labels < 0] = 0
pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
o3d.visualization.draw_geometries([pcd],
                                  zoom=0.455,
                                  front=[-0.4999, -0.1659, -0.8499],
                                  lookat=[2.1813, 2.0619, 2.0999],
                                  up=[0.1204, -0.9852, 0.1

Open3D点云处理_第20张图片

4.5 平面分割

Open3D支持使用RANSAC方法从点云中分割几何基元(geometric primitives)。通过segment_plane方法,可以找到点云中的最大支持平面(the plane with the largest support)。该方法提供了三个参数:

  • distance_threshold:定义了一个点可被视为内嵌点的估计平面的最大距离
  • ransac_n:定义用来估计平面的随机抽样点数量
  • num_iterations:定义了随机平面抽样和验证的频率

Open3D点云处理_第21张图片

4.6 消隐点

当我们从给定视角渲染点云时,由于前方没有遮挡,可能会有背面的点渗入到前景中。Katz提出了一种消隐算法(Hidden point removal),可以从给定的视图中近似地获得点云的可见性,而无需表面重建或正常的估计。

print("Convert mesh to a point cloud and estimate dimensions")
armadillo = o3d.data.ArmadilloMesh()
mesh = o3d.io.read_triangle_mesh(armadillo.path)
mesh.compute_vertex_normals()

pcd = mesh.sample_points_poisson_disk(5000)
diameter = np.linalg.norm(
    np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()))
o3d.visualization.draw_geometries([pcd])

Open3D点云处理_第22张图片

print("Define parameters used for hidden_point_removal")
camera = [0, 0, diameter]
radius = diameter * 100

print("Get all points that are visible from given view point")
_, pt_map = pcd.hidden_point_removal(camera, radius)

print("Visualize result")
pcd = pcd.select_by_index(pt_map)
o3d.visualization.draw_geometries([pcd])

Open3D点云处理_第23张图片

你可能感兴趣的:(PointCloud,Open3D,python,opencv,3d)