利用一个矩阵来表示图中顶点之间的关系,反映的是顶点间的相邻关系。一个n行n列的矩阵表示由n个顶点的图,如果(i,j)或者属于边集合,则矩阵中第i行j列的值为1,否则为0。图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。
设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:
例如:的邻接矩阵为
看一个实例,下图左就是一个无向图:
从邻接矩阵的定义可以推断,无向图的邻接矩阵是对称的;有向图的邻接矩阵是则不具备该性质。
借助于邻接矩阵,可判定任意两点之间是否有边(或者弧)相连,并且容易求得各个顶点的度。对于无向图,顶点vi的度是邻接矩阵第i行(或列)的值不为0的元素数目(或元素的和);对于有向图,第i行元素之和为顶点vi的出度OD(vi),第j列的元素之和为顶点vj的入度ID(vj)。
从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。
从这个矩阵中,很容易知道图中的信息。
(1)要判断任意两顶点是否有边无边就很容易了;
(2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;
(3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;
而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。
若图G是网图,有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:
这里的wij表示(vi,vj)上的权值。无穷大表示一个计算机允许的、大于所有边上权值的值,也就是一个不可能的极限值。下面左图就是一个有向网图,右图就是它的邻接矩阵。
#include
#include
#include
typedef char VertexType; //顶点类型应由用户定义
typedef int EdgeType; //边上的权值类型应由用户定义
#define MAXVEX 100 //最大顶点数,应由用户定义
#define INFINITY 65535 //用65535来代表无穷大
#define DEBUG
typedef struct
{
VertexType vexs[MAXVEX]; //顶点表
EdgeType arc[MAXVEX][MAXVEX]; //邻接矩阵,可看作边
int numVertexes, numEdges; //图中当前的顶点数和边数
}Graph;
//定位
int locates(Graph *g, char ch)
{
int i = 0;
for(i = 0; i < g->numVertexes; i++)
{
if(g->vexs[i] == ch)
{
break;
}
}
if(i >= g->numVertexes)
{
return -1;
}
return i;
}
//建立一个无向网图的邻接矩阵表示
void CreateGraph(Graph *g)
{
int i, j, k, w;
printf("输入顶点数和边数:\n");
scanf("%d,%d", &(g->numVertexes), &(g->numEdges));
#ifdef DEBUG
printf("%d %d\n", g->numVertexes, g->numEdges);
#endif
for(i = 0; i < g->numVertexes; i++)
{
g->vexs[i] = getchar();
while(g->vexs[i] == '\n')
{
g->vexs[i] = getchar();
}
}
#ifdef DEBUG
for(i = 0; i < g->numVertexes; i++)
{
printf("%c ", g->vexs[i]);
}
printf("\n");
#endif
for(i = 0; i < g->numEdges; i++)
{
for(j = 0; j < g->numEdges; j++)
{
g->arc[i][j] = INFINITY; //邻接矩阵初始化
}
}
for(k = 0; k < g->numEdges; k++)
{
char p, q;
printf("输入边(vi,vj)上的下标i,下标j和权值:\n");
p = getchar();
while(p == '\n')
{
p = getchar();
}
q = getchar();
while(q == '\n')
{
q = getchar();
}
scanf("%d", &w);
int m = -1;
int n = -1;
m = locates(g, p);
n = locates(g, q);
if(n == -1 || m == -1)
{
fprintf(stderr, "there is no this vertex.\n");
return;
}
//getchar();
g->arc[m][n] = w;
g->arc[n][m] = g->arc[m][n]; //因为是无向图,矩阵对称
}
}
//打印图
void printGraph(Graph g)
{
int i, j;
for(i = 0; i < g.numVertexes; i++)
{
for(j = 0; j < g.numVertexes; j++)
{
printf("%d ", g.arc[i][j]);
}
printf("\n");
}
}
int main(int argc, char **argv)
{
Graph g;
//邻接矩阵创建图
CreateGraph(&g);
printGraph(g);
return 0;
}
邻接矩阵是不错的一种图存储结构,但是,对于边数相对顶点较少的图,这种结构存在对存储空间的极大浪费。因此,找到一种数组与链表相结合的存储方法称为邻接表。
邻接表的处理方法是这样的:
(1)图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过,数组可以较容易的读取顶点的信息,更加方便。
(2)图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以,用单链表存储,无向图称为顶点vi的边表,有向图则称为顶点vi作为弧尾的出边表。
例如,下图就是一个无向图的邻接表的结构。
从图中可以看出,顶点表的各个结点由data和firstedge两个域表示,data是数据域,存储顶点的信息,firstedge是指针域,指向边表的第一个结点,即此顶点的第一个邻接点。边表结点由adjvex和next两个域组成。adjvex是邻接点域,存储某顶点的邻接点在顶点表中的下标,next则存储指向边表中下一个结点的指针。
对于带权值的网图,可以在边表结点定义中再增加一个weight的数据域,存储权值信息即可。如下图所示。
对于邻接表结构,图的建立代码如下:
/* 邻接表表示的图结构 */
#include
#include
#define DEBUG
#define MAXVEX 1000 //最大顶点数
typedef char VertexType; //顶点类型应由用户定义
typedef int EdgeType; //边上的权值类型应由用户定义
typedef struct EdgeNode //边表结点
{
int adjvex; //邻接点域,存储该顶点对应的下标
EdgeType weigth; //用于存储权值,对于非网图可以不需要
struct EdgeNode *next; //链域,指向下一个邻接点
}EdgeNode;
typedef struct VertexNode //顶点表结构
{
VertexType data; //顶点域,存储顶点信息
EdgeNode *firstedge; //边表头指针
}VertexNode, AdjList[MAXVEX];
typedef struct
{
AdjList adjList;
int numVertexes, numEdges; //图中当前顶点数和边数
}GraphList;
int Locate(GraphList *g, char ch)
{
int i;
for(i = 0; i < MAXVEX; i++)
{
if(ch == g->adjList[i].data)
{
break;
}
}
if(i >= MAXVEX)
{
fprintf(stderr,"there is no vertex.\n");
return -1;
}
return i;
}
//建立图的邻接表结构
void CreateGraph(GraphList *g)
{
int i, j, k;
EdgeNode *e;
EdgeNode *f;
printf("输入顶点数和边数:\n");
scanf("%d,%d", &g->numVertexes, &g->numEdges);
#ifdef DEBUG
printf("%d,%d\n", g->numVertexes, g->numEdges);
#endif
for(i = 0; i < g->numVertexes; i++)
{
printf("请输入顶点%d:\n", i);
g->adjList[i].data = getchar(); //输入顶点信息
g->adjList[i].firstedge = NULL; //将边表置为空表
while(g->adjList[i].data == '\n')
{
g->adjList[i].data = getchar();
}
}
//建立边表
for(k = 0; k < g->numEdges; k++)
{
printf("输入边(vi,vj)上的顶点序号:\n");
char p, q;
p = getchar();
while(p == '\n')
{
p = getchar();
}
q = getchar();
while(q == '\n')
{
q = getchar();
}
int m, n;
m = Locate(g, p);
n = Locate(g, q);
if(m == -1 || n == -1)
{
return;
}
#ifdef DEBUG
printf("p = %c\n", p);
printf("q = %c\n", q);
printf("m = %d\n", m);
printf("n = %d\n", n);
#endif
//向内存申请空间,生成边表结点
e = (EdgeNode *)malloc(sizeof(EdgeNode));
if(e == NULL)
{
fprintf(stderr, "malloc() error.\n");
return;
}
//邻接序号为j
e->adjvex = n;
//将e指针指向当前顶点指向的结构
e->next = g->adjList[m].firstedge;
//将当前顶点的指针指向e
g->adjList[m].firstedge = e;
f = (EdgeNode *)malloc(sizeof(EdgeNode));
if(f == NULL)
{
fprintf(stderr, "malloc() error.\n");
return;
}
f->adjvex = m;
f->next = g->adjList[n].firstedge;
g->adjList[n].firstedge = f;
}
}
void printGraph(GraphList *g)
{
int i = 0;
#ifdef DEBUG
printf("printGraph() start.\n");
#endif
while(g->adjList[i].firstedge != NULL && i < MAXVEX)
{
printf("顶点:%c ", g->adjList[i].data);
EdgeNode *e = NULL;
e = g->adjList[i].firstedge;
while(e != NULL)
{
printf("%d ", e->adjvex);
e = e->next;
}
i++;
printf("\n");
}
}
int main(int argc, char **argv)
{
GraphList g;
CreateGraph(&g);
printGraph(&g);
return 0;
}
对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才知道,反之,逆邻接表解决了入度却不了解出度 情况。下面介绍的这种有向图的存储方法: 十字链表,就是把邻接表和逆邻接表结合起来的。 重新定义顶点表结点结构,如下所示。
其中firstin表示入边表头指针,指向该顶点的入边表中第一个结点,firstout表示出边表头指针,指向该顶点的出边表中的第一个结点。
重新定义边表结构,如下所示。
其中,tailvex是指弧起点在顶点表的下表,headvex是指弧终点在顶点表的下标,headlink是指入边表指针域,指向终点相同的下一条边,taillink是指边表指针域,指向起点相同的下一条边。如果是网,还可以增加一个weight域来存储权值。
比如下图,顶点依然是存入一个一维数组,实线箭头指针的图示完全与邻接表相同。就以顶点v0来说,firstout指向的是出边表中的第一个结点v3。所以,v0边表结点hearvex = 3,而tailvex其实就是当前顶点v0的下标0,由于v0只有一个出边顶点,所有headlink和taillink都是空的。
重点需要解释虚线箭头的含义。它其实就是此图的逆邻接表的表示。对于v0来说,它有两个顶点v1和v2的入边。因此的firstin指向顶点v1的边表结点中headvex为0的结点,如上图圆圈1。接着由入边结点的headlink指向下一个入边顶点v2,如上图圆圈2。对于顶点v1,它有一个入边顶点v2,所以它的firstin指向顶点v2的边表结点中headvex为1的结点,如上图圆圈3。
十字链表的好处就是因为把邻接表和逆邻接表整合在一起,这样既容易找到以v为尾的弧,也容易找到以v为头的弧,因而比较容易求得顶点的出度和入度。
而且除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的,因此,在有向图应用中,十字链表是非常好的数据结构模型。
这里就介绍以上三种存储结构,除了第三种存储结构外,其他的两种存储结构比较简单。
等会儿我会讲解图的遍历!