【DETR源码解析】四、损失计算和后处理模块

目录

  • 前言
  • 一、损失计算:SetCriterion
    • 1.1、匈牙利算法,二分图匹配:self.matcher
    • 1.2、计算损失:self.get_loss
      • 1.2.1、分类损失:self.loss_labels
      • 1.2.2、回归损失:self.boxes
  • 二、bbox后处理:PostProcess
  • Reference

前言

最近在看DETR的源码,断断续续看了一星期左右,把主要的模型代码理清了。一直在考虑以什么样的形式写一写DETR的源码解析。考虑的一种形式是像之前写的YOLOv5那样的按文件逐行写,一种是想把源码按功能模块串起来。考虑了很久还是决定按第二种方式,一是因为这种方式可能会更省时间,另外就是也方便我整体再理解一下吧。

我觉得看代码就是要看到能把整个模型分功能拆开,最后再把所有模块串起来,这样才能达到事半功倍。

另外一点我觉得很重要的是:拿到一个开源项目代码,要有马上配置环境能够正常运行Debug,并且通过解析train.py马上找到主要模型相关的内容,然后着重关注模型方面的解析,像一些日志、计算mAP、画图等等代码,完全可以不看,可以省很多时间,所以以后我讲解源码都会把无关的代码完全剥离,不再讲解,全部精力关注模型、改进、损失等内容。

这一节主要讲一下DETR的损失计算和后处理部分。主要涉及models/matcher.py、models/detr.py和engine.py三个文件。

Github注释版源码:HuKai97/detr-annotations

一、损失计算:SetCriterion

首先在detr.py中会先定义好损失函数:

criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict,eos_coef=args.eos_coef, losses=losses)
criterion.to(device)

然后在engine.py的train_one_epoch中前向推理结束后调用criterion函数,计算损失:

# 前向传播
outputs = model(samples)
# 计算损失  loss_dict: 'loss_ce' + 'loss_bbox' + 'loss_giou'    用于log日志: 'class_error' + 'cardinality_error'
loss_dict = criterion(outputs, targets)
# 权重系数 {'loss_ce': 1, 'loss_bbox': 5, 'loss_giou': 2}
weight_dict = criterion.weight_dict   
# 总损失 = 回归损失:loss_bbox(L1)+loss_bbox  +   分类损失:loss_ce
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)

好了下面着重介绍下SetCriterion类:

class SetCriterion(nn.Module):
    """ This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """
    def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
        """ Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.num_classes = num_classes     # 数据集类别数
        self.matcher = matcher             # HungarianMatcher()  匈牙利算法 二分图匹配
        self.weight_dict = weight_dict     # dict: 18  3x6  6个decoder的损失权重   6*(loss_ce+loss_giou+loss_bbox)
        self.eos_coef = eos_coef           # 0.1
        self.losses = losses               # list: 3  ['labels', 'boxes', 'cardinality']
        empty_weight = torch.ones(self.num_classes + 1)
        empty_weight[-1] = self.eos_coef   # tensro: 92   前91=1  92=eos_coef=0.1
        self.register_buffer('empty_weight', empty_weight)
        
    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
                      dict: 'pred_logits'=Tensor[bs, 100, 92个class]  'pred_boxes'=Tensor[bs, 100, 4]  最后一个decoder层输出
                             'aux_output'={list:5}  0-4  每个都是dict:2 pred_logits+pred_boxes 表示5个decoder前面层的输出
             targets: list of dicts, such that len(targets) == batch_size.   list: bs
                      每张图片包含以下信息:'boxes'、'labels'、'image_id'、'area'、'iscrowd'、'orig_size'、'size'
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        # dict: 2   最后一个decoder层输出  pred_logits[bs, 100, 92个class] + pred_boxes[bs, 100, 4]
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        # 匈牙利算法  解决二分图匹配问题  从100个预测框中找到和N个gt框一一对应的预测框  其他的100-N个都变为背景
        # Retrieve the matching between the outputs of the last layer and the targets  list:1
        # tuple: 2    0=Tensor3=Tensor[5, 35, 63]  匹配到的3个预测框  其他的97个预测框都是背景
        #             1=Tensor3=Tensor[1, 0, 2]    对应的三个gt框
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets)   # int 统计这整个batch的所有图片的gt总个数  3
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()   # 3.0

        # 计算最后层decoder损失  Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # 计算前面5层decoder损失  累加到一起  得到最终的losses
        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets)   # 同样匈牙利算法匹配
                for loss in self.losses:   # 计算各个loss
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)
        # 参加权重更新的损失:losses: 'loss_ce' + 'loss_bbox' + 'loss_giou'    用于log日志: 'class_error' + 'cardinality_error'
        return losses

整个函数主要在做两件事:

  1. 调用self.matcher函数,从100个预测框中匹配出N个(gt个数)真正的预测框,匹配出每个gt框对应的预测框;
  2. 调用self.get_loss,计算各个损失

1.1、匈牙利算法,二分图匹配:self.matcher

匈牙利算法原理可以看看这篇经典博客:算法学习笔记(5):匈牙利算法

而在DETR是在models/matcher.py中的HungarianMatcher类实现了匈牙利匹配算法:

class HungarianMatcher(nn.Module):
    """This class computes an assignment between the targets and the predictions of the network

    For efficiency reasons, the targets don't include the no_object. Because of this, in general,
    there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
    while the others are un-matched (and thus treated as non-objects).
    """

    def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1):
        """Creates the matcher

        Params:
            cost_class: This is the relative weight of the classification error in the matching cost
            cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
            cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
        """
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
    
    # 不需要更新梯度  只是一种匹配方式
    @torch.no_grad()
    def forward(self, outputs, targets):
        """ Performs the matching

        Params:
            outputs: This is a dict that contains at least these entries:
                 "pred_logits": Tensor of dim [batch_size, num_queries, num_classes]=[bs,100,92] with the classification logits
                 "pred_boxes": Tensor of dim [batch_size, num_queries, 4]=[bs,100,4] with the predicted box coordinates

            targets: list:bs This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
                 "labels": Tensor of dim [num_target_boxes]=[3] (where num_target_boxes is the number of ground-truth
                           objects in the target) containing the class labels
                 "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates

        Returns:
            A list of size batch_size, containing tuples of (index_i, index_j) where:
                - index_i is the indices of the selected predictions (in order)
                - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds:
                len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        # batch_size  100
        bs, num_queries = outputs["pred_logits"].shape[:2]

        # We flatten to compute the cost matrices in a batch
        # [2,100,92] -> [200, 92] -> [200, 92]概率
        out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1)  # [batch_size * num_queries, num_classes]
        # [2,100,4] -> [200, 4]
        out_bbox = outputs["pred_boxes"].flatten(0, 1)  # [batch_size * num_queries, 4]

        # Also concat the target labels and boxes
        # [3]  idx = 32, 1, 85  concat all labels
        tgt_ids = torch.cat([v["labels"] for v in targets])
        # [3, 4]  concat all box
        tgt_bbox = torch.cat([v["boxes"] for v in targets])

        # 计算损失   分类 + L1 box + GIOU box
        # Compute the classification cost. Contrary to the loss, we don't use the NLL,
        # but approximate it in 1 - proba[target class].
        # The 1 is a constant that doesn't change the matching, it can be ommitted.
        cost_class = -out_prob[:, tgt_ids]

        # Compute the L1 cost between boxes
        cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)

        # Compute the giou cost betwen boxes
        cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))

        # Final cost matrix   [100, 3]  bs*100个预测框分别和3个gt框的损失矩阵
        C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
        C = C.view(bs, num_queries, -1).cpu()  # [bs, 100, 3]

        sizes = [len(v["boxes"]) for v in targets]   # gt个数 3

        # 匈牙利算法进行二分图匹配  从100个预测框中挑选出最终的3个预测框 分别和gt计算损失  这个组合的总损失是最小的
        # 0: [3]  5, 35, 63   匹配到的gt个预测框idx
        # 1: [3]  1, 0, 2     对应的gt idx
        indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
        
        # list: bs  返回bs张图片的匹配结果
        # 每张图片都是一个tuple:2
        # 0 = Tensor[gt_num,]  匹配到的正样本idx       1 = Tensor[gt_num,]  gt的idx
        return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]

其实就是先计算每个预测框(100个)和每个gt框的总损失,形成损失矩阵C,然后调用scipy.optimize.linear_sum_assignment写好的匈牙利算法,匹配的原则就是 ”loss总和“ 最小(这里的loss并不是真正的loss,这里只是一种度量方式,和loss的计算方式是不一样的),得到每个gt对应的唯一负责的预测框,其他的预测框会自动归为背景。

linear_sum_assignment,输入一个二分图的度量矩阵(cost 矩阵),计算这个二分图的度量矩阵的最小权重分配方式,返回的是匹配方案对应的矩阵行索引(预测框idx)和列索引(gt框idx)。

1.2、计算损失:self.get_loss

self.get_loss是SetCriterion类定义的一个函数:

    def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
        loss_map = {
            'labels': self.loss_labels,
            'cardinality': self.loss_cardinality,
            'boxes': self.loss_boxes,
            'masks': self.loss_masks
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)

同时会调用分类损失(self.loss_labels)、回归损失(self.boxes)和cardinality损失。不过cardinality损失只用于log,并不参与梯度更新,所以这里不展开叙述。另外如果是分割任务,这里还有一个mask分割损失计算,这里也暂时不展开叙述。

1.2.1、分类损失:self.loss_labels

分类损失self.loss_labels:

    def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        outputs:'pred_logits'=[bs, 100, 92] 'pred_boxes'=[bs, 100, 4] 'aux_outputs'=5*([bs, 100, 92]+[bs, 100, 4])
        targets:'boxes'=[3,4] labels=[3] ...
        indices: [3] 如:5,35,63  匹配好的3个预测框idx
        num_boxes:当前batch的所有gt个数
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']  # 分类:[bs, 100, 92类别]

        # idx tuple:2  0=[num_all_gt] 记录每个gt属于哪张图片  1=[num_all_gt] 记录每个匹配到的预测框的index
        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        # 正样本+负样本  上面匹配到的预测框作为正样本 正常的idx  而100个中没有匹配到的预测框作为负样本(idx=91 背景类)
        target_classes[idx] = target_classes_o

        # 分类损失 = 正样本 + 负样本
        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
        losses = {'loss_ce': loss_ce}

        # 日志 记录Top-1精度
        if log:
            # TODO this should probably be a separate loss, not hacked in this one here
            losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]

        # losses: 'loss_ce': 分类损失
        #         'class_error':Top-1精度 即预测概率最大的那个类别与对应被分配的GT类别是否一致  这部分仅用于日志显示 并不参与模型训练
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        # [num_all_gt]  记录每个gt都是来自哪张图片的 idx
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        # 记录匹配到的预测框的idx
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

注意:

  1. 分类损失 = 交叉熵损失;
  2. 正样本+负样本=100,正样本个数=GT个数,负样本个数=100-GT个数;
  3. 92个类别,idx=91表示背景类别;
  4. 注意这里有一个_get_src_permutation_id函数,主要是讲预测框拉平,原本是有batch这个维度的,现在拉平到一维,方便后续计算损失;
  5. 这里还会计算一个class_error:Top-1精度,用于日志显示;

1.2.2、回归损失:self.boxes

回归损失self.boxes:

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
           targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
           The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
        outputs:'pred_logits'=[bs, 100, 92] 'pred_boxes'=[bs, 100, 4] 'aux_outputs'=5*([bs, 100, 92]+[bs, 100, 4])
        targets:'boxes'=[3,4] labels=[3] ...
        indices: [3] 如:5,35,63  匹配好的3个预测框idx
        num_boxes:当前batch的所有gt个数
        """
        assert 'pred_boxes' in outputs
        # idx tuple:2  0=[num_all_gt] 记录每个gt属于哪张图片  1=[num_all_gt] 记录每个匹配到的预测框的index
        idx = self._get_src_permutation_idx(indices)

        # [all_gt_num, 4]  这个batch的所有正样本的预测框坐标
        src_boxes = outputs['pred_boxes'][idx]
        # [all_gt_num, 4]  这个batch的所有gt框坐标
        target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)

        # 计算L1损失
        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')

        losses = {}
        losses['loss_bbox'] = loss_bbox.sum() / num_boxes

        # 计算GIOU损失
        loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
            box_ops.box_cxcywh_to_xyxy(src_boxes),
            box_ops.box_cxcywh_to_xyxy(target_boxes)))
        losses['loss_giou'] = loss_giou.sum() / num_boxes

        # 'loss_bbox': L1回归损失   'loss_giou': giou回归损失  
        return losses

注意:

  1. 回归损失:只计算所有正样本的回归损失;
  2. 回归损失 = L1 Loss + GIOU Loss

二、bbox后处理:PostProcess

这部分是测试环节,前向传播之后,计算损失用于log显示,并计算coco指标。

同样先在detr.py中会先定义好后处理函数:

# 定义后处理
postprocessors = {'bbox': PostProcess()}	

然后在engine.py的evaluate中前向推理结束后调用PostProcess函数,对预测的100个框进行后处理:

# 前向传播
outputs = model(samples)
# 后处理
# orig_target_sizes = [bs, 2]  bs张图片的原图大小
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
# list: bs    每个list都是一个dict  包括'scores'  'labels'  'boxes'三个字段
# scores = Tensor[100,]  这张图片预测的100个预测框概率分数
# labels = Tensor[100,]  这张图片预测的100个预测框所属类别idx
# boxes = Tensor[100, 4] 这张图片预测的100个预测框的绝对位置坐标(相对这张图片的原图大小的坐标)
results = postprocessors['bbox'](outputs, orig_target_sizes)

PostProcess类:

class PostProcess(nn.Module):
    """ This module converts the model's output into the format expected by the coco api"""
    @torch.no_grad()
    def forward(self, outputs, target_sizes):
        """ Perform the computation
        Parameters:
            outputs: raw outputs of the model
                     0 pred_logits 分类头输出[bs, 100, 92(类别数)]
                     1 pred_boxes 回归头输出[bs, 100, 4]
                     2 aux_outputs list: 5  前5个decoder层输出 5个pred_logits[bs, 100, 92(类别数)] 和 5个pred_boxes[bs, 100, 4]
            target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
                          For evaluation, this must be the original image size (before any data augmentation)
                          For visualization, this should be the image size after data augment, but before padding
        """
        # out_logits:[bs, 100, 92(类别数)]
        # out_bbox:[bs, 100, 4]
        out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']

        assert len(out_logits) == len(target_sizes)
        assert target_sizes.shape[1] == 2

        # [bs, 100, 92]  对每个预测框的类别概率取softmax
        prob = F.softmax(out_logits, -1)
        # prob[..., :-1]: [bs, 100, 92] -> [bs, 100, 91]  删除背景
        # .max(-1): scores=[bs, 100]  100个预测框属于最大概率类别的概率
        #           labels=[bs, 100]  100个预测框的类别
        scores, labels = prob[..., :-1].max(-1)

        # cxcywh to xyxy  format   [bs, 100, 4]
        boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
        # and from relative [0, 1] to absolute [0, height] coordinates  bs张图片的宽和高
        img_h, img_w = target_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
        boxes = boxes * scale_fct[:, None, :]  # 归一化坐标 -> 绝对位置坐标(相对于原图的坐标)  [bs, 100, 4]

        results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]

        # list: bs    每个list都是一个dict  包括'scores'  'labels'  'boxes'三个字段
        # scores = Tensor[100,]  这张图片预测的100个预测框概率分数
        # labels = Tensor[100,]  这张图片预测的100个预测框所属类别idx
        # boxes = Tensor[100, 4] 这张图片预测的100个预测框的绝对位置坐标(相对这张图片的原图大小的坐标)
        return results

可以看到后处理其实就是把预测结果进行统计,剔除背景类,得到每张图片预测的100个预测框的所属类别的概率分数scores 、所属类别labels 、绝对位置坐标boxes 。

然后最后将这个结果送入coco_evaluator中,计算coco相关指标。

而在预测的时候,实际上我们最终的预测物体一般没有100个物体,这时候是怎么处理的呢?一般是会设置一个预测概率分数的阈值(0.7),大于这个预测的预测框最终才会保留下来显示,那些小于预测的预测框会舍去。

Reference

官方源码: https://github.com/facebookresearch/detr

b站源码讲解: 铁打的流水线工人

知乎【布尔佛洛哥哥】: DETR 源码解读

CSDN【在努力的松鼠】源码讲解: DETR源码笔记(一)

CSDN【在努力的松鼠】源码讲解: DETR源码笔记(二)

知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(一)、概述与模型推断】

知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(二)、模型训练过程与数据处理】

知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(三)、Backbone与位置编码】

知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(四)、Detection with Transformer】

知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(五)、loss函数与匈牙利匹配算法】

知乎CV不会灰飞烟灭-【源码解析目标检测的跨界之星DETR(六)、模型输出与预测生成】

你可能感兴趣的:(#,Transformer,Based,Cls&Det,DETR,匈牙利算法,损失计算,后处理)