全新深度学习与PyTorch入门实战教程

深度学习与PyTorch入门实战教程
┣━━1.深度学习框架介绍
┃ ┗━━1.lesson1-PyTorch介绍.mp4
┣━━2.开发环境准备
┃ ┗━━2.lesson2-开发环境准备.mp4
┣━━3.初见深度学习
┃ ┣━━3.lesson3-初探Linear Regression案例-1.mp4
┃ ┣━━4.lesson3-初探Linear Regression案例-2.mp4
┃ ┣━━5.lesson4-PyTorch求解Linear Regression案例.mp4
┃ ┣━━6.lesson5 -手写数字问题引入1.mp4
┃ ┗━━7.lesson5 -手写数字问题引入2.mp4
┣━━4.Pytorch张量操作
┃ ┣━━8.lesson6 基本数据类型1.mp4
┃ ┣━━9.lesson6 基本数据类型2.mp4
┃ ┣━━10.lesson7 创建Tensor 1.mp4
┃ ┣━━11.lesson7 创建Tensor 2.mp4
┃ ┣━━12.lesson8 索引与切片1.mp4
┃ ┣━━13.lesson8 索引与切片2.mp4
┃ ┣━━14.lesson9 维度变换1.mp4
┃ ┣━━15.lesson9 维度变换2.mp4
┃ ┣━━16.lesson9 维度变换3.mp4
┃ ┗━━17.lesson9 维度变换4.mp4
┣━━5.张量高阶操作
┃ ┣━━18.lesson10 Broatcasting 1.mp4
┃ ┣━━19.lesson10 Broatcasting 2.mp4
┃ ┣━━20.lesson11 合并与切割1.mp4
┃ ┣━━21.lesson11 合并与切割2.mp4
┃ ┣━━22.lesson12 基本运算.mp4
┃ ┣━━23.lesson13 数据统计1.mp4
┃ ┣━━24.lesson13 数据统计2.mp4
┃ ┗━━25.lesson14 高阶OP.mp4
┣━━6.随机梯度下降
┃ ┣━━26.lesson16 什么是梯度1.mp4
┃ ┣━━27.lesson16 什么是梯度2.mp4
┃ ┣━━28.lesson17 常见梯度.mp4
┃ ┣━━29.lesson18 激活函数及其梯度1.mp4
┃ ┣━━30.lesson18 激活函数及其梯度2.mp4
┃ ┗━━31.lesson18 激活函数及其梯度3.mp4
┣━━7.感知机梯度传播推导
┃ ┣━━32.lesson19 单一输出感知机1.mp4
┃ ┣━━33.lesson19 多输出Loss层2.mp4
┃ ┣━━34.lesson20 链式法则.mp4
┃ ┣━━35.lesson21 反向传播.mp4
┃ ┗━━36.lesson22 优化小实例.mp4
┣━━8.多层感知机与分类器
┃ ┣━━37.lesson24 Logistic Regression.mp4
┃ ┣━━38.lesson25 交叉熵.mp4
┃ ┣━━39.lesson26 多分类实战.mp4
┃ ┣━━40.lesson27 全连接层.mp4
┃ ┣━━41.lesson28 激活函数与GPU加速.mp4
┃ ┣━━42.lesson29 测试.mp4
┃ ┗━━43.lesson30-Visdom可视化.mp4
┣━━9.过拟合
┃ ┣━━44.lesson31-过拟合与欠拟合.mp4
┃ ┣━━45.lesson32-Train-Val-Test-交叉验证-1.mp4
┃ ┣━━46.lesson32-Train-Val-Test-交叉验证-2.mp4
┃ ┣━━47.lesson33-regularization.mp4
┃ ┣━━48.lesson34-动量与lr衰减.mp4
┃ ┗━━49.lesson35-early stopping, dropout, sgd.mp4
┣━━10.卷积神经网络CNN
┃ ┣━━50.lesson37-什么是卷积-1.mp4
┃ ┣━━51.lesson37-什么是卷积-2.mp4
┃ ┣━━52.lesson38-卷积神经网络-1.mp4
┃ ┣━━53.lesson38-卷积神经网络-2.mp4
┃ ┣━━54.lesson38-卷积神经网络-3.mp4
┃ ┣━━55.lesson39-Pooling&upsample.mp4
┃ ┣━━56.lesson40-BatchNorm-1.mp4
┃ ┣━━57.lesson40-BatchNorm-2.mp4
┃ ┣━━58.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4
┃ ┣━━59.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4
┃ ┣━━60.lesson42-ResNet,DenseNet-1.mp4
┃ ┣━━61.lesson42-ResNet, DenseNet-2.mp4
┃ ┣━━62.lesson43-nn.Module-1.mp4
┃ ┣━━63.lesson43-nn.Module-2.mp4
┃ ┗━━64.lesson44-数据增强Data Argumentation.mp4
┣━━11.CIFAR10与ResNet实战
┣━━12.循环神经网络RNN&LSTM
┃ ┣━━65.lesson46-时间序列表示.mp4
┃ ┣━━66.lesson47-RNN原理-1.mp4
┃ ┣━━67.lesson47-RNN原理-2.mp4
┃ ┣━━68.lesson48-RNN Layer使用-1.mp4
┃ ┣━━69.lesson48-RNN Layer使用-2.mp4
┃ ┣━━70.lesson49-时间序列预测.mp4
┃ ┣━━71.lesson50-RNN训练难题.mp4
┃ ┣━━72.lesson51-LSTM原理-1.mp4
┃ ┣━━73.lesson51-LSTM原理-2.mp4
┃ ┣━━74.lesson52-LSTM Layer使用.mp4
┃ ┗━━75.lesson53-情感分类实战.mp4
┗━━13.对抗生成网络GAN
┣━━76.lesson54-数据分布.mp4
┣━━77.lesson55-画家的成长历程.mp4
┣━━78.lesson56-GAN发展.mp4
┣━━79.lesson57-纳什均衡-D.mp4
┣━━80.lesson58-纳什均衡-G.mp4
┣━━81.lesson59-JS散度的弊端.mp4
┣━━82.lesson60-EM距离.mp4
┣━━83.lesson61-WGAN与WGAN-GP.mp4
┣━━84.lesson62-G和D实现.mp4
┣━━85.lesson63-GAN实战.mp4
┣━━86.lesson64-GAN训练不稳定.mp4
┗━━87.lesson65-WGAN-GP实战.mp4

深度学习与PyTorch入门实战教程
┣━━1.深度学习框架介绍
┃ ┗━━1.lesson1-PyTorch介绍.mp4
┣━━2.开发环境准备
┃ ┗━━2.lesson2-开发环境准备.mp4
┣━━3.初见深度学习
┃ ┣━━3.lesson3-初探Linear Regression案例-1.mp4
┃ ┣━━4.lesson3-初探Linear Regression案例-2.mp4
┃ ┣━━5.lesson4-PyTorch求解Linear Regression案例.mp4
┃ ┣━━6.lesson5 -手写数字问题引入1.mp4
┃ ┗━━7.lesson5 -手写数字问题引入2.mp4
┣━━4.Pytorch张量操作
┃ ┣━━8.lesson6 基本数据类型1.mp4
┃ ┣━━9.lesson6 基本数据类型2.mp4
┃ ┣━━10.lesson7 创建Tensor 1.mp4
┃ ┣━━11.lesson7 创建Tensor 2.mp4
┃ ┣━━12.lesson8 索引与切片1.mp4
┃ ┣━━13.lesson8 索引与切片2.mp4
┃ ┣━━14.lesson9 维度变换1.mp4
┃ ┣━━15.lesson9 维度变换2.mp4
┃ ┣━━16.lesson9 维度变换3.mp4
┃ ┗━━17.lesson9 维度变换4.mp4
┣━━5.张量高阶操作
┃ ┣━━18.lesson10 Broatcasting 1.mp4
┃ ┣━━19.lesson10 Broatcasting 2.mp4
┃ ┣━━20.lesson11 合并与切割1.mp4
┃ ┣━━21.lesson11 合并与切割2.mp4
┃ ┣━━22.lesson12 基本运算.mp4
┃ ┣━━23.lesson13 数据统计1.mp4
┃ ┣━━24.lesson13 数据统计2.mp4
┃ ┗━━25.lesson14 高阶OP.mp4
┣━━6.随机梯度下降
┃ ┣━━26.lesson16 什么是梯度1.mp4
┃ ┣━━27.lesson16 什么是梯度2.mp4
┃ ┣━━28.lesson17 常见梯度.mp4
┃ ┣━━29.lesson18 激活函数及其梯度1.mp4
┃ ┣━━30.lesson18 激活函数及其梯度2.mp4
┃ ┗━━31.lesson18 激活函数及其梯度3.mp4
┣━━7.感知机梯度传播推导
┃ ┣━━32.lesson19 单一输出感知机1.mp4
┃ ┣━━33.lesson19 多输出Loss层2.mp4
┃ ┣━━34.lesson20 链式法则.mp4
┃ ┣━━35.lesson21 反向传播.mp4
┃ ┗━━36.lesson22 优化小实例.mp4
┣━━8.多层感知机与分类器
┃ ┣━━37.lesson24 Logistic Regression.mp4
┃ ┣━━38.lesson25 交叉熵.mp4
┃ ┣━━39.lesson26 多分类实战.mp4
┃ ┣━━40.lesson27 全连接层.mp4
┃ ┣━━41.lesson28 激活函数与GPU加速.mp4
┃ ┣━━42.lesson29 测试.mp4
┃ ┗━━43.lesson30-Visdom可视化.mp4
┣━━9.过拟合
┃ ┣━━44.lesson31-过拟合与欠拟合.mp4
┃ ┣━━45.lesson32-Train-Val-Test-交叉验证-1.mp4
┃ ┣━━46.lesson32-Train-Val-Test-交叉验证-2.mp4
┃ ┣━━47.lesson33-regularization.mp4
┃ ┣━━48.lesson34-动量与lr衰减.mp4
┃ ┗━━49.lesson35-early stopping, dropout, sgd.mp4
┣━━10.卷积神经网络CNN
┃ ┣━━50.lesson37-什么是卷积-1.mp4
┃ ┣━━51.lesson37-什么是卷积-2.mp4
┃ ┣━━52.lesson38-卷积神经网络-1.mp4
┃ ┣━━53.lesson38-卷积神经网络-2.mp4
┃ ┣━━54.lesson38-卷积神经网络-3.mp4
┃ ┣━━55.lesson39-Pooling&upsample.mp4
┃ ┣━━56.lesson40-BatchNorm-1.mp4
┃ ┣━━57.lesson40-BatchNorm-2.mp4
┃ ┣━━58.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4
┃ ┣━━59.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4
┃ ┣━━60.lesson42-ResNet,DenseNet-1.mp4
┃ ┣━━61.lesson42-ResNet, DenseNet-2.mp4
┃ ┣━━62.lesson43-nn.Module-1.mp4
┃ ┣━━63.lesson43-nn.Module-2.mp4
┃ ┗━━64.lesson44-数据增强Data Argumentation.mp4
┣━━11.CIFAR10与ResNet实战
┣━━12.循环神经网络RNN&LSTM
┃ ┣━━65.lesson46-时间序列表示.mp4
┃ ┣━━66.lesson47-RNN原理-1.mp4
┃ ┣━━67.lesson47-RNN原理-2.mp4
┃ ┣━━68.lesson48-RNN Layer使用-1.mp4
┃ ┣━━69.lesson48-RNN Layer使用-2.mp4
┃ ┣━━70.lesson49-时间序列预测.mp4
┃ ┣━━71.lesson50-RNN训练难题.mp4
┃ ┣━━72.lesson51-LSTM原理-1.mp4
┃ ┣━━73.lesson51-LSTM原理-2.mp4
┃ ┣━━74.lesson52-LSTM Layer使用.mp4
┃ ┗━━75.lesson53-情感分类实战.mp4
┗━━13.对抗生成网络GAN
┣━━76.lesson54-数据分布.mp4
┣━━77.lesson55-画家的成长历程.mp4
┣━━78.lesson56-GAN发展.mp4
┣━━79.lesson57-纳什均衡-D.mp4
┣━━80.lesson58-纳什均衡-G.mp4
┣━━81.lesson59-JS散度的弊端.mp4
┣━━82.lesson60-EM距离.mp4
┣━━83.lesson61-WGAN与WGAN-GP.mp4
┣━━84.lesson62-G和D实现.mp4
┣━━85.lesson63-GAN实战.mp4
┣━━86.lesson64-GAN训练不稳定.mp4
┗━━87.lesson65-WGAN-GP实战.mp4

https://www.52xxzy.com/2370.html

你可能感兴趣的:(深度学习,pytorch,机器学习)