目录
一、 插入数据
1. insert
1). 优化方案一
2). 优化方案二
3). 优化方案三
2. 大批量插入数据
示例演示:
二、主键优化
1. 数据组织方式
2. 页分裂
A. 主键顺序插入效果
编辑B. 主键乱序插入效果
3. 页合并
4. 索引设计原则
三、order by优化
A. 数据准备
B. 执行排序SQL
C. 创建索引
D. 创建索引后,根据age, phone进行升序排序
E. 创建索引后,根据age, phone进行降序排序
F. 根据phone,age进行升序排序,phone在前,age在后。
G. 根据age, phone进行降序一个升序,一个降序
H. 创建联合索引(age 升序排序,phone 倒序排序)
I. 然后再次执行如下SQL
四、group by优化
五、limit优化
优化思路:
六、count优化
1. 概述
2. count用法
七、update优化
如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。
insert into tb_test values(1,'tom');
insert into tb_test values(2,'cat');
insert into tb_test values(3,'jerry');
.....
批量插入数据
Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
手动控制事务
start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;
主键顺序插入,性能要高于乱序插入。
主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89
如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
可以执行如下指令,将数据脚本文件中的数据加载到表结构中:
-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
-- 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n' ;
主键顺序插入性能高于乱序插入
A. 设置参数
-- 客户端连接服务端时,加上参数 -–local-infile
mysql --local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
B. 创建表结构
create database ittest;
use ittest;
CREATE TABLE `tb_user` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`username` VARCHAR(50) NOT NULL,
`password` VARCHAR(50) NOT NULL,
`name` VARCHAR(20) NOT NULL,
`birthday` DATE DEFAULT NULL,
`sex` CHAR(1) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;
C. load加载数据
load data local infile '/root/sql/load_user_100w_sort.sql' into table tb_user fields terminated by ',' lines terminated by '\n' ;
我们看到,插入100w的记录,27s就完成了,性能很好。
在load时,主键顺序插入性能高于乱序插入
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。
行数据,都是存储在聚集索引的叶子节点上的。而我们之前也讲解过InnoDB的逻辑结构图:
在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。
页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。
①. 从磁盘中申请页, 主键顺序插入
②. 第一个页没有满,继续往第一页插入
③. 当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接
①. 加入1#,2#页都已经写满了,存放了如图所示的数据
②. 此时再插入id为50的记录,我们来看看会发生什么现象
会再次开启一个页,写入新的页中吗?
不会。因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在47之后。
目前表中已有数据的索引结构(叶子节点)如下:
知识小贴士:
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。
MySQL的排序,有两种方式:
对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。
接下来,我们来做一个测试:
把之前测试时,为itcast数据库中的tb_user表所建立的部分索引直接删除掉:
drop index idx_user_phone on tb_user;
drop index idx_user_phone_name on tb_user;
drop index idx_user_name on tb_user;
explain select id,age,phone from tb_user order by age ;
explain select id,age,phone from tb_user order by age, phone ;
由于 age, phone 都没有索引,所以此时再排序时,出现Using filesort, 排序性能较低。
-- 创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);
explain select id,age,phone from tb_user order by age;
explain select id,age,phone from tb_user order by age , phone;
建立索引之后,再次进行排序查询,就由原来的Using filesort, 变为了 Using index,性能
就是比较高的了。
explain select id,age,phone from tb_user order by age desc , phone desc ;
也出现 Using index, 但是此时Extra中出现了 Backward index scan,这个代表反向扫描索
引,因为在MySQL中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询排序时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan。 在MySQL8版本中,支持降序索引,我们也可以创建降序索引。
排序时,也需要满足最左前缀法则,否则也会出现 filesort。因为在创建索引的时候, age是第一个字段,phone是第二个字段,所以排序时,也就该按照这个顺序来,否则就会出现 Using
filesort。
explain select id,age,phone from tb_user order by age asc , phone desc ;
因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,此时就会出现Using filesort。
为了解决上述的问题,我们可以创建一个索引,这个联合索引中 age 升序排序,phone 倒序排序。
create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);
explain select id,age,phone from tb_user order by age asc , phone desc ;
升序/降序联合索引结构图示:
由上述的测试,我们得出order by优化原则:
A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
B. 尽量使用覆盖索引。
C. 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
D. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小
sort_buffer_size(默认256k)。
分组操作,我们主要来看看索引对于分组操作的影响。
首先我们先将 tb_user 表的索引全部删除掉 。
drop index idx_user_pro_age_sta on tb_user;
drop index idx_email_5 on tb_user;
drop index idx_user_age_phone_aa on tb_user;
drop index idx_user_age_phone_ad on tb_user;
接下来,在没有索引的情况下,执行如下SQL,查询执行计划:
explain select profession , count(*) from tb_user group by profession ;
然后,我们在针对于 profession , age, status 创建一个联合索引。
create index idx_user_pro_age_sta on tb_user(profession , age , status);
紧接着,再执行前面相同的SQL查看执行计划。
再执行如下的分组查询SQL,查看执行计划:
我们发现,如果仅仅根据age分组,就会出现 Using temporary ;而如果是 根据profession,age两个字段同时分组,则不会出现 Using temporary。原因是因为对于分组操作,在联合索引中,也是符合最左前缀法则的。
所以,在分组操作中,我们需要通过以下两点进行优化,以提升性能:
A. 在分组操作时,可以通过索引来提高效率。
B. 分组操作时,索引的使用也是满足最左前缀法则的。
在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。
我们一起来看看执行limit分页查询耗时对比:
mysql> select count(*) from tb_sku;
+----------+
| count(*) |
+----------+
| 6000000 |
+----------+
1 row in set (18.81 sec)
mysql> select * from tb_sku limit 1000000,10;
·······
10 rows in set (1.81 sec)
mysql> select * from tb_sku limit 5000000,10;
······
10 rows in set (12.24 sec)
通过测试我们会看到,越往后,分页查询效率越低,这就是分页查询的问题所在。
因为,当在进行分页查询时,如果执行 limit 5000000,10 ,此时需要MySQL排序前5000010 记录,仅仅返回 5000000 - 5000010 的记录,其他记录丢弃,查询排序的代价非常大 。
一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查
询形式进行优化。
select * from tb_sku s , (select id from tb_sku order by id limit 5000000,10) a where s.id = a.id;
10 rows in set (4.84 sec)
select count(*) from tb_user ;
在之前的测试中,我们发现,如果数据量很大,在执行count操作时,是非常耗时的。
如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦了)。
count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是
NULL,累计值就加 1,否则不加,最后返回累计值。
用法:count(*)、count(主键)、count(字段)、count(数字)
按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(*),所以尽量使用 count(*)。
我们主要需要注意一下update语句执行时的注意事项。
update course set name = 'javaEE' where id = 1 ;
当我们在执行更新的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。
但是当我们在执行如下SQL时。
update course set name = 'SpringBoot' where name = 'PHP' ;
当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能大大降低。
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。