// Both relative poses and recovered trajectory poses will be stored as Pose2 objects
#include
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include
// We want to use iSAM2 to solve the range-SLAM problem incrementally
#include
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
#include
#include
// We will use a non-liear solver to batch-inituialize from the first 150 frames
#include
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems.
#include
#include
#include
// Standard headers, added last, so we know headers above work on their own
#include
#include
// load the odometry
// DR: Odometry Input (delta distance traveled and delta heading change)
// Time (sec) Delta Dist. Trav. (m) Delta Heading (rad)
typedef pair<double, Pose2> TimedOdometry;
list<TimedOdometry> readOdometry() {
list<TimedOdometry> odometryList;
string data_file = findExampleDataFile("Plaza2_DR.txt");
ifstream is(data_file.c_str());
while (is) {
double t, distance_traveled, delta_heading;
is >> t >> distance_traveled >> delta_heading;
odometryList.push_back(
TimedOdometry(t, Pose2(distance_traveled, 0, delta_heading)));
}
is.clear(); /* clears the end-of-file and error flags */
return odometryList;
}
// load the ranges from TD
// Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
typedef boost::tuple<double, size_t, double> RangeTriple;
vector<RangeTriple> readTriples() {
vector<RangeTriple> triples;
string data_file = findExampleDataFile("Plaza2_TD.txt");
ifstream is(data_file.c_str());
while (is) {
double t, sender, range;
size_t receiver;
is >> t >> sender >> receiver >> range;
triples.push_back(RangeTriple(t, receiver, range));
}
is.clear(); /* clears the end-of-file and error flags */
return triples;
}
数据读取和参数设置
// load Plaza2 data
list<TimedOdometry> odometry = readOdometry();
// size_t M = odometry.size();
vector<RangeTriple> triples = readTriples();
size_t K = triples.size();
// parameters
size_t minK = 150; // minimum number of range measurements to process initially
size_t incK = 25; // minimum number of range measurements to process after
bool groundTruth = false;
bool robust = true;
// Set Noise parameters
Vector priorSigmas = Vector3(1,1,M_PI);
Vector odoSigmas = Vector3(0.05, 0.01, 0.1);
double sigmaR = 100; // range standard deviation
const NM::Base::shared_ptr // all same type
priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior
odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust
rangeNoise = robust ? tukey : gaussian;
robust kernel
初始化iSAM和添加先验
// Initialize iSAM
ISAM2 isam;
// Add prior on first pose
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
M_PI - 2.02108900000000);
NonlinearFactorGraph newFactors;
newFactors.addPrior(0, pose0, priorNoise);
Values initial;
initial.insert(0, pose0);
landmarks初始化
// initialize points
if (groundTruth) { // from TL file
initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778));
initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278));
initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678));
initial.insert(symbol('L', 5), Point2(1.7095, -5.8122));
} else { // drawn from sigma=1 Gaussian in matlab version
initial.insert(symbol('L', 1), Point2(3.5784, 2.76944));
initial.insert(symbol('L', 6), Point2(-1.34989, 3.03492));
initial.insert(symbol('L', 0), Point2(0.725404, -0.0630549));
initial.insert(symbol('L', 5), Point2(0.714743, -0.204966));
}
// Loop over odometry
gttic_(iSAM);
for(const TimedOdometry& timedOdometry: odometry) {
//--------------------------------- odometry loop -----------------------------------------
double t;
Pose2 odometry;
boost::tie(t, odometry) = timedOdometry;
// add odometry factor //添加里程计因子
newFactors.push_back(BetweenFactor<Pose2>(i-1, i, odometry, odoNoise));
// predict pose and add as initial estimate //预测估计值
Pose2 predictedPose = lastPose.compose(odometry);
lastPose = predictedPose;
initial.insert(i, predictedPose);
// Check if there are range factors to be added
// 添加RangeFactor
while (k < K && t >= boost::get<0>(triples[k])) {
size_t j = boost::get<1>(triples[k]);
double range = boost::get<2>(triples[k]);
newFactors.push_back(RangeFactor<Pose2, Point2>(i, symbol('L', j), range,rangeNoise));
k = k + 1;
countK = countK + 1;
}
// Check whether to update iSAM 2
// 更新iSAM2
if ((k > minK) && (countK > incK)) {
if (!initialized) { // Do a full optimize for first minK ranges
gttic_(batchInitialization);
LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial);
initial = batchOptimizer.optimize();
gttoc_(batchInitialization);
initialized = true;
}
gttic_(update);
isam.update(newFactors, initial);
gttoc_(update);
gttic_(calculateEstimate);
Values result = isam.calculateEstimate();
gttoc_(calculateEstimate);
lastPose = result.at<Pose2>(i);
newFactors = NonlinearFactorGraph();
initial = Values();
countK = 0;
}
i += 1;
//--------------------------------- odometry loop -----------------------------------------
} // end for