pandas是一个十分强大的数据处理工具,最近需要处理数据并输入到excel,简单列举它的几个用法:
1.按行写入excel:
import os
import pandas as pd
cur_dir = os.path.dirname(__file__)
# c创建一个DataFrame数据类型,并写入表头
res = pd.DataFrame(columns=("k1", "k2", "k3"))
#添加两行数据
res.loc[1] = ["11", "22", "33"]
res.loc[2] = ["111", "222", "333"]
# 写入excel文件
res.to_excel(os.path.join(cur_dir, "test.xlsx"))
#读取excel内容
df =pd.read_excel(os.path.join(cur_dir, "test.xlsx"))
print(df.head())
#获取某一单元格数据,索引从0开始,不包含表头
df.iloc[m][m]
输出为:
Unnamed: 0 k1 k2 k3
0 1 11 22 33
1 2 111 222 333
2.按列写入:
df2 =pd.DataFrame({"data2": ['aa', 'bb', 'cc', 'dd', 'ee'],"data3":['ss', 'ff', 'gg', 'hh', 'kk']})
df2.to_excel(os.path.join(cur_dir, "test1.xlsx"), sheet_name="sheet1",startcol=0, index=False)
to_excel每次运行会覆盖上一次生成的文件
输出为:
3.交换两列
import os
cur_dir = os.path.dirname(__file__)
import pandas as pd
df2 =pd.DataFrame({"data2": ['aa', 'bb', 'cc', 'dd', 'ee'],"data3":['ss', 'ff', 'gg', 'hh', 'kk']})
df2.to_excel(os.path.join(cur_dir, "test1.xlsx"), sheet_name="sheet1",startcol=0, index=False)
dfnew = df2[['data3', 'data2']]
print(dfnew)
#两种方法均可
dfnew2 =pd.DataFrame(df2, columns=['data3', 'data2'])
print(dfnew2)
交换后的内容为:
data3 data2
0 ss aa
1 ff bb
2 gg cc
3 hh dd
4 kk ee
data3 data2
0 ss aa
1 ff bb
2 gg cc
3 hh dd
4 kk ee
4.把某一行转换为list打印
df2 =pd.DataFrame({"data2": ['aa', 'bb', 'cc', 'dd', 'ee'],"data3":['ss', 'ff', 'gg', 'hh', 'kk']})
df2.to_excel(os.path.join(cur_dir, "test1.xlsx"), sheet_name="sheet1",startcol=0, index=False)
print(df2)
print("*"*10)
print(df2.loc[1])
print("*"*10)
print(df2.iloc[1].tolist())
print("*"*10)
tmp = df2.iloc[1].to_string()
print(tmp, type(tmp))
输出为:
data2 data3
0 aa ss
1 bb ff
2 cc gg
3 dd hh
4 ee kk
**********
data2 bb
data3 ff
Name: 1, dtype: object
**********
['bb', 'ff']
**********
data2 bb
data3 ff <class 'str'>
5.获取行索引列索引
df2 =pd.DataFrame({"data2": ['aa', 'bb', 'cc', 'dd', 'ee'], "data3": ['ss', 'ff', 'gg', 'hh', 'kk']})
df2.to_excel(os.path.join(cur_dir, "test1.xlsx"), sheet_name="sheet1", startcol=0, index=False)
print(df2.index)
print(df2.columns)
for x in df2.columns:
print(x)
pandas更多功能还需要继续学习~~