sklearn学习_第二章_随机森林

随机森林

概述

集成算法概述
集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。
集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现。

sklearn中的集成算法
sklearn中的集成算法模块ensemble

类 							类的功能
ensemble.AdaBoostClassifier AdaBoost分类
ensemble.AdaBoostRegressor Adaboost回归
ensemble.BaggingClassifier 装袋分类器
ensemble.BaggingRegressor 装袋回归器
ensemble.ExtraTreesClassifier Extra-trees分类(超树,极端随机树)
ensemble.ExtraTreesRegressor Extra-trees回归
ensemble.GradientBoostingClassifier 梯度提升分类
ensemble.GradientBoostingRegressor 梯度提升回归
ensemble.IsolationForest 隔离森林
ensemble.RandomForestClassifier 随机森林分类
ensemble.RandomForestRegressor 随机森林回归
ensemble.RandomTreesEmbedding 完全随机树的集成
ensemble.VotingClassifier 用于不合适估算器的软投票/多数规则分类器

随机森林分类器

重要参数
控制基评估器的参数(所有基评估器都是决策树)

参数 					含义
criterion 			不纯度的衡量指标,有基尼系数和信息熵两种选择
max_depth 			树的最大深度,超过最大深度的树枝都会被剪掉
min_samples_leaf 	一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生
min_samples_split 	一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生
max_features		max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃,默认值为总特征个数开平方取整    min_impurity_decrease 限制信息增益的大小,信息增益小于设定数值的分枝不会发生

n_estimators
这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。

使用红酒数据做实验
导入库

%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine

导入数据

wine = load_wine()
wine.data
wine.target

sklearn建模的基本流程

from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)#区分测试集和训练集
clf = DecisionTreeClassifier(random_state=0)#决策树模型实例化
rfc = RandomForestClassifier(random_state=0)#随机森林模型实例化
clf = clf.fit(Xtrain,Ytrain)#决策树数据训练
rfc = rfc.fit(Xtrain,Ytrain)#随机森林数据训练
score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)
print("Single Tree:{}".format(score_c)
  ,"Random Forest:{}".format(score_r)
  )

画出随机森林和决策树在一组交叉验证下的效果对比

#目的是带大家复习一下交叉验证
#交叉验证:是数据集划分为n分,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10)
clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10)
plt.plot(range(1,11),rfc_s,label = "RandomForest")
plt.plot(range(1,11),clf_s,label = "Decision Tree")
plt.legend()
plt.show()

画出随机森林和决策树在十组交叉验证下的效果对比

rfc_l = []
clf_l = []
for i in range(10):
  rfc = RandomForestClassifier(n_estimators=25)
  rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
  rfc_l.append(rfc_s)
  clf = DecisionTreeClassifier()
  clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()
  clf_l.append(clf_s)
 
plt.plot(range(1,11),rfc_l,label = "Random Forest")
plt.plot(range(1,11),clf_l,label = "Decision Tree")
plt.legend()
plt.show()

结论:决策树准确率大于50%时随机森林效果远好于决策树

random_state
sklearn中的分类树DecisionTreeClassifier自带随机性,所以随机森林中的树天生就都是不一样的。我们在讲解分类树时曾提到,决策树从最重要的特征中随机选择出一个特征来进行分枝,因此每次生成的决策树都不一样,这个功能由参数random_state控制。

随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。

rfc = RandomForestClassifier(n_estimators=20,random_state=2)
rfc = rfc.fit(Xtrain, Ytrain)
#随机森林的重要属性之一:estimators,查看森林中树的状况
rfc.estimators_[0].random_state
for i in range(len(rfc.estimators_)):
  print(rfc.estimators_[i].random_state)

bootstrap & oob_score
让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。

备注:采取一个样本再放回一个样本,通过这种方式获得更多的样本组合

#无需划分训练集和测试集
rfc = RandomForestClassifier(n_estimators=25,oob_score=True)
rfc = rfc.fit(wine.data,wine.target)
#重要属性oob_score_
rfc.oob_score_

重要属性和接口
feature_importances,apply,predict,predict_proba

rfc = RandomForestClassifier(n_estimators=25)
rfc = rfc.fit(Xtrain, Ytrain)
rfc.score(Xtest,Ytest)
rfc.feature_importances_
rfc.apply(Xtest)
rfc.predict(Xtest)
rfc.predict_proba(Xtest)

Bonus:Bagging的另一个必要条件:
基分类器的判断准确率至少要超过50%

随机森林回归器

重要参数,属性与接口
criterion

回归树衡量分枝质量的指标,支持的标准有三种:
1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失
2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失

备注:和回归树一样的

重要属性和接口
最重要的属性和接口,都与随机森林的分类器相一致,还是apply, fit, predict和score最为核心。

随机森林回归用法 和回归树一样,多了一个参数n_estimators

from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
boston = load_boston()
regressor = RandomForestRegressor(n_estimators=100,random_state=0)
cross_val_score(regressor, boston.data, boston.target, cv=10
       ,scoring = "neg_mean_squared_error")
sorted(sklearn.metrics.SCORERS.keys()#显示skelearn的scoring方法

用随机森林回归填补缺失值
在sklearn中,我们可以使用sklearn.impute.SimpleImputer将均值,中值,或者其他最常用的数值填补到数据中

导入库(以波士顿数据为例)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score

导入数据

dataset = load_boston()
dataset.data.shape
#总共506*13=6578个数据
X_full, y_full = dataset.data, dataset.target
n_samples = X_full.shape[0]
n_features = X_full.shape[1]

放入缺失值

#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失
rng = np.random.RandomState(0)
missing_rate = 0.5
n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))
#np.floor向下取整,返回.0格式的浮点数
#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引
#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可以利用索引来为数据中的任意3289个位置赋空值
#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何
missing_features = rng.randint(0,n_features,n_missing_samples)
missing_samples = rng.randint(0,n_samples,n_missing_samples)
#missing_samples = rng.choice(dataset.data.shape[0],n_missing_samples,replace=False)
#我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。但如果我们需要的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数,因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中
X_missing = X_full.copy()
y_missing = y_full.copy()
X_missing[missing_samples,missing_features] = np.nan
X_missing = pd.DataFrame(X_missing)
#转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如pandas来得好用

使用0和均值填补缺失值

#使用均值进行填补
from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
X_missing_mean = imp_mean.fit_transform(X_missing)
#使用0进行填补
imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)
X_missing_0 = imp_0.fit_transform(X_missing)

X_missing_reg = X_missing.copy()
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values
for i in sortindex:
 
  #构建我们的新特征矩阵和新标签
  df = X_missing_reg
  fillc = df.iloc[:,i]
  df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)
 
  #在新特征矩阵中,对含有缺失值的列,进行0的填补
  df_0 =SimpleImputer(missing_values=np.nan,
            strategy='constant',fill_value=0).fit_transform(df)
 
  #找出我们的训练集和测试集
  Ytrain = fillc[fillc.notnull()]
  Ytest = fillc[fillc.isnull()]
  Xtrain = df_0[Ytrain.index,:]
  Xtest = df_0[Ytest.index,:]
 
  #用随机森林回归来填补缺失值
  rfc = RandomForestRegressor(n_estimators=100)
  rfc = rfc.fit(Xtrain, Ytrain)
  Ypredict = rfc.predict(Xtest)
 
  #将填补好的特征返回到我们的原始的特征矩阵中
  X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict

对填补好的数据进行建模

#对所有数据进行建模,取得MSE结果
X = [X_full,X_missing_mean,X_missing_0,X_missing_reg]
mse = []
std = []
for x in X:
  estimator = RandomForestRegressor(random_state=0, n_estimators=100)
  scores = cross_val_score(estimator,x,y_full,scoring='neg_mean_squared_error',
cv=5).mean()
  mse.append(scores * -1)

用所得结果画出条形图

x_labels = ['Full data',
      'Zero Imputation',
      'Mean Imputation',
      'Regressor Imputation']
colors = ['r', 'g', 'b', 'orange']
plt.figure(figsize=(12, 6))
ax = plt.subplot(111)
for i in np.arange(len(mse)):
  ax.barh(i, mse[i],color=colors[i], alpha=0.6, align='center')
ax.set_title('Imputation Techniques with Boston Data')
ax.set_xlim(left=np.min(mse) * 0.9,
      right=np.max(mse) * 1.1)
ax.set_yticks(np.arange(len(mse)))
ax.set_xlabel('MSE')
ax.set_yticklabels(x_labels)
plt.show()

机器学习中调参的基本思想

我们用来衡量模型在未知数据上的准确率的指标,叫做泛化误差(Genelization error)
模型太简单或者太复杂都会加大泛化误差
随机森林是天生高复杂度的模型,所以要减少复杂度,防止过拟合

参数 对模型在未知数据上的评估性能的影响 影响程度
n_estimators 提升至平稳,n_estimators↑,不影响单个模型的复杂度 ⭐⭐⭐⭐
max_depth 有增有减,默认最大深度,即最高复杂度,向复杂度降低的方向调参max_depth↓,模型更简单,且向图像的左边移动 ⭐⭐⭐
min_samples_leaf 有增有减,默认最小限制1,即最高复杂度,向复杂度降低的方向调参min_samples_leaf↑,模型更简单,且向图像的左边移动 ⭐⭐
min_samples_split 有增有减,默认最小限制2,即最高复杂度,向复杂度降低的方向调参min_samples_split↑,模型更简单,且向图像的左边移动 ⭐⭐
max_features 有增有减,默认auto,是特征总数的开平方,位于中间复杂度,既可以向复杂度升高的方向,也可以向复杂度降低的方向调参max_features↓,模型更简单,图像左移max_features↑,模型更复杂,图像右移max_features是唯一的,既能够让模型更简单,也能够让模型更复杂的参数,所以在调整这个参数的时候,需要考虑我们调参的方向
criterion 有增有减,一般使用gini 看具体情况

随机森林在乳腺癌数据上的调参

导入库

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

导入数据集

data = load_breast_cancer()
data
data.data.shape
data.target
#可以看到,乳腺癌数据集有569条记录,30个特征,单看维度虽然不算太高,但是样本量非常少。过拟合的情况可能存在

进行一次简单的建模,看看模型本身在数据集上的效果

rfc = RandomForestClassifier(n_estimators=100,random_state=90)
score_pre = cross_val_score(rfc,data.data,data.target,cv=10).mean()
score_pre
#这里可以看到,随机森林在乳腺癌数据上的表现本就还不错,在现实数据集上,基本上不可能什么都不调就看到95%以上的准确率

随机森林调整的第一步:n_estimators

scorel = []
for i in range(0,200,10):
  rfc = RandomForestClassifier(n_estimators=i+1,
                n_jobs=-1,
                random_state=90)
  score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
  scorel.append(score)
print(max(scorel),(scorel.index(max(scorel))*10)+1)
plt.figure(figsize=[20,5])
plt.plot(range(1,201,10),scorel)
plt.show()
#list.index([object])
#返回这个object在列表list中的索引

在确定好的范围内,进一步细化学习曲线

scorel = []
for i in range(35,45):
  rfc = RandomForestClassifier(n_estimators=i,
                n_jobs=-1,
                random_state=90)
  score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
  scorel.append(score)
print(max(scorel),([*range(35,45)][scorel.index(max(scorel))]))
plt.figure(figsize=[20,5])
plt.plot(range(35,45),scorel)
plt.show()

为网格搜索做准备,书写网格搜索的参数

"""
有一些参数是没有参照的,很难说清一个范围,这种情况下我们使用学习曲线,看趋势
从曲线跑出的结果中选取一个更小的区间,再跑曲线
param_grid = {'n_estimators':np.arange(0, 200, 10)}
param_grid = {'max_depth':np.arange(1, 20, 1)}
 
param_grid = {'max_leaf_nodes':np.arange(25,50,1)}
对于大型数据集,可以尝试从1000来构建,先输入1000,每100个叶子一个区间,再逐渐缩小范围
有一些参数是可以找到一个范围的,或者说我们知道他们的取值和随着他们的取值,模型的整体准确率会如何变化,这
样的参数我们就可以直接跑网格搜索
param_grid = {'criterion':['gini', 'entropy']}
param_grid = {'min_samples_split':np.arange(2, 2+20, 1)}
param_grid = {'min_samples_leaf':np.arange(1, 1+10, 1)}
param_grid = {'max_features':np.arange(5,30,1)}
"""

首先调整max_depth

#调整max_depth
param_grid = {'max_depth':np.arange(1, 20, 1)}
# 一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探
# 但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够
#  更应该画出学习曲线,来观察深度对模型的影响
rfc = RandomForestClassifier(n_estimators=39
              ,random_state=90
             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_

调整min_samples_leaf

#调整min_samples_leaf
param_grid={'min_samples_leaf':np.arange(1, 1+10, 1)}
#对于min_samples_split和min_samples_leaf,一般是从他们的最小值开始向上增加10或20
#面对高维度高样本量数据,如果不放心,也可以直接+50,对于大型数据,可能需要200~300的范围
#如果调整的时候发现准确率无论如何都上不来,那可以放心大胆调一个很大的数据,大力限制模型的复杂度
rfc = RandomForestClassifier(n_estimators=39
              ,random_state=90
             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_

min_samples_split

#调整min_samples_split
param_grid={'min_samples_split':np.arange(2, 2+20, 1)}
rfc = RandomForestClassifier(n_estimators=39
              ,random_state=90
             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_

criterion

#调整Criterion
param_grid = {'criterion':['gini', 'entropy']}
rfc = RandomForestClassifier(n_estimators=39
              ,random_state=90
             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)
GS.best_params_
GS.best_score_

总结出模型的最佳参数

rfc = RandomForestClassifier(n_estimators=39,random_state=90)
score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
score
score - score_pre

你可能感兴趣的:(sklearn,机器学习,python,人工智能,机器学习,决策树)