pytorch教程(1.2)——认识数据集和数据加载器

目录

  • 摘要
  • 加载数据集
  • 迭代和可视化数据集
  • 为您的文件创建自定义数据集
    • \__init\__
    • \__len\__
    • \__getitem\__
  • 准备数据以使用 DataLoaders 进行训练
    • 准备数据以使用 DataLoaders 进行训练

摘要

处理数据样本的代码可能会变得混乱且难以维护; 我们理想地希望我们的数据集代码与我们的模型训练代码分离,以获得更好的可读性和模块化。 PyTorch 提供了两种数据原语:torch.utils.data.DataLoader 和 torch.utils.data.Dataset,它们允许您使用预加载的数据集以及您自己的数据。 Dataset 存储样本及其相应的标签,DataLoader 在 Dataset 周围包装一个可迭代对象,以便轻松访问样本。
PyTorch 域库提供了许多预加载的数据集(例如 FashionMNIST),它们是 torch.utils.data.Dataset 的子类并实现特定于特定数据的功能。 它们可用于对模型进行原型设计和基准测试。 您可以在此处找到它们:图像数据集、文本数据集和音频数据集。

加载数据集

以下是如何从 TorchVision 加载 Fashion-MNIST 数据集的示例。 Fashion-MNIST 是 Zalando 文章图像的数据集,由 60,000 个训练示例和 10,000 个测试示例组成。 每个示例都包含一个 28×28 灰度图像和来自 10 个类别之一的相关标签。我们使用以下参数加载 FashionMNIST 数据集:root 是存储训练/测试数据的路径,train 指定训练或测试数据集,如果数据在根目录下不可用,download=True 从互联网下载数据。
transform 和 target_transform 指定特征和标签转换。

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

迭代和可视化数据集

我们可以像列表一样手动索引数据集:training_data[index]。 我们使用 matplotlib 来可视化训练数据中的一些样本。

labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
    sample_idx = torch.randint(len(training_data), size=(1,)).item()
    img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.squeeze(), cmap="gray")
plt.show()

pytorch教程(1.2)——认识数据集和数据加载器_第1张图片

为您的文件创建自定义数据集

自定义数据集类必须实现三个函数:initlengetitem。 看看这个实现; FashionMNIST 图像存储在目录 img_dir 中,它们的标签单独存储在 CSV 文件 annotations_file 中。
在接下来的部分中,我们将分解每个函数中发生的事情。

import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label

_init_

_init_ 函数在实例化 Dataset 对象时运行一次。 我们初始化包含图像、注释文件和两个转换的目录(下一节将详细介绍)。
label.csv 文件如下所示:

tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
    self.img_labels = pd.read_csv(annotations_file)
    self.img_dir = img_dir
    self.transform = transform
    self.target_transform = target_transform

_len_

_len_ 函数返回我们数据集中的样本数。
例子:

def __len__(self):
    return len(self.img_labels)

_getitem_

_getitem_ 函数从给定索引 idx 的数据集中加载并返回一个样本。 基于索引,它识别图像在磁盘上的位置,使用 read_image 将其转换为张量,从 self.img_labels 中的 csv 数据中检索相应的标签,对其调用变换函数(如果适用),并返回张量图像 和元组中的相应标签。

准备数据以使用 DataLoaders 进行训练

数据集检索我们数据集的特征并一次标记一个样本。 在训练模型时,我们通常希望以“小批量”的形式传递样本,在每个时期重新洗牌数据以减少模型过度拟合,并使用 Python 的多处理来加速数据检索。
DataLoader 是一个迭代器,它在一个简单的 API 中为我们抽象了这种复杂性。

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

准备数据以使用 DataLoaders 进行训练

我们已经将该数据集加载到 DataLoader 中,并且可以根据需要遍历数据集。 下面的每次迭代都会返回一批 train_features 和 train_labels(分别包含 batch_size=64 个特征和标签)。 因为我们指定了 shuffle=True,所以在我们遍历所有批次后,数据会被打乱(为了对数据加载顺序进行更细粒度的控制,请查看 Samplers)。

# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

pytorch教程(1.2)——认识数据集和数据加载器_第2张图片

你可能感兴趣的:(#,Pytorch,深度学习,pytorch,深度学习,神经网络)