人工智能之情感计算(Research Report of Affective Computing)

文章目录

  • 一、情感计算
  • 二、视觉情感计算
    • 2.1 视觉情感信号获取
    • 2.2 视觉情感信号识别
  • 三、情感计算技术的两面性


一、情感计算

  • 简单来说,情感计算研究就是试图创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统。显然,情感计算是个复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且要考虑表情、语言、动作或身体的接触。在人机交互中,计算机需要捕捉关键信息,觉察人的情感变化,形成预期,进行调整,做出反应。例如通过对不同类型的用户建模(如操作方式、表情特点、态度喜好、认知风格、知识背景等),以识别用户的情感状态,利用有效的线索选择合适的用户模型,并以适合当前用户的方式呈现信息。在对当前的操作做出及时反馈的同时,还要对情感变化背后的意图形成新的预期,并激活相应的数据库,及时主动地提供用户需要的新信息。
  • 举例来说,麻省理工学院媒体实验室的情感计算小组研制的情感计算系统通过记录人面部表情的摄像机和连接在人身体上的生物传感器来收集数据,然后由一个“情感助理”来调节程序以识别人的情感。假设你对电视讲座的一段内容表现出困惑,情感助理会重放该片段或者给予解释。
  • 情感计算是一个高度综合化的研究和技术领域。通过计算科学与心理科学、认知科学的结合,研究人与人交互、人与计算机交互过程中的情感特点,设计具有情感反馈的人与计算机的交互环境,将有可能实现人与计算机的情感交互。情感计算研究将不断加深对人的情感状态和机制的理解,并提高人与计算机界面的和谐性,即提高计算机感知情境,理解人的情感和意图,做出适当反应的能力,其主要研究内容如下图所示:
    人工智能之情感计算(Research Report of Affective Computing)_第1张图片

二、视觉情感计算

  • 表情作为人类情感表达的主要方式,其中蕴含了大量有关内心情感变化的信息,通过面部表情可以推断内心微妙的情感状态。但是让计算机读懂人类面部表情并非简单的事情。人脸表情识别是人类视觉最杰出的能力之一。而计算机进行自动人脸表情识别所利用的主要也是视觉数据。无论在识别准确性、速度、可靠性还是稳健性方面,人类自身的人脸表情识别能力都远远高于基于计算机的自动人脸表情识别。因此,自动人脸表情识别研究的进展一方面依赖计算机视觉、模式识别、人工智能等学科的发展,另一方面还依赖对人类本身识别系统的认识程度,特别是对人的视觉系统的认识程度。

2.1 视觉情感信号获取

  • 表情参数的获取,多以二维静态或序列图像为对象,对微笑的表情变化难以判断,导致情感表达的表现力难以提高,同时无法体现人的个性化特征,这也是表情识别中的一大难点。以目前的技术,在不同的光照条件和不同头部姿态下,也不能取得满意的参数提取效果。由于三维图像比二维图像包含更多的信息量,可以提供鲁棒性更强,与光照条件和人的头部姿态无关的信息,用于人脸表情识别的特征提取工作更容易进行。因此,目前最新的研究大多利用多元图像数据来进行细微表情参数的捕获。该方法综合利用三维深度图像和二维彩色图像,通过对特征区深度特征和纹理彩色特征的分析和融合,提取细微表情特征,并建立人脸的三维模型,以及细微表情变化的描述机制

2.2 视觉情感信号识别

对于面部表情的识别:要求计算机具有类似于第三方观察者一样的情感识别能力。由于面部表情是最容易控制的一种,所以识别出来的并不一定是真正的情感,但是,也正由于它是可视的,所以它非常重要,并能通过观察它来了解一个人试图表达的东西。到目前为止,面部表情识别模型都是将情感视为离散的,即将面部表情分成为数不多的类别,例如“高兴”、“悲伤”、“愤怒”等。

  • 1978 年,Ekman 和 Friesen
    研究了情感类别之间的内在关系,开发了面部动作编码系统(FACS)。系统描述了基本情感以及对应的产生这种情感的肌肉移动的动作单元。他们根据人脸的解剖学特点,将其划分成大约46个既相互独立又相互联系的运动单元(AU),并分析了这些运动单元的运动特征及其所控制的主要区域以及与之相关的表情,给出了大量的照片说明。面部识别器一般要花五分钟来处理一种面部表情,准确率达到98%。
  • 马里兰大学的 Yeser Yacoob 和 Larry Davis 提出了另一种面部表情识别模型,它也是基于动作能量模版,但是将模版、子模版(例如嘴部区域)和一些规则结合起来表达情感。例如,愤怒的表情在从眼睛区域提取的子模版中,特别是眉毛内敛、下垂,在嘴巴区域子模版中,特别是嘴巴紧闭,两个子模板结合起来,就很好表达了愤怒这一情感。后续的研究总体上结合生物识别方法及计算机视觉进行,依据人脸特定的生物特征,将各种表情同脸部运动细节(几何网格的变化)联系起来,收集样本,提取特征,构建分类器。但是目前公开的用于表情识别研究的人脸图像数据库多是采集志愿者刻意表现出的各种表情的图像,与真实情形有出入。

三、情感计算技术的两面性

优点:

  • 对人类的情感进行识别和响应,帮助人们理解自己和他人的情感世界。
  • 在远程教育平台中,进一步优化计算机辅助学习的功能。
  • 推进可穿戴的计算机系统的发展,以及智能、便携式个人身体保健与监护系统的开发。
  • 帮助我们增加使用设备的安全性和增加自动感知人们的情绪状态的功能,可以在娱乐、游戏等方面提供更好的服务。

缺点:

  • 首先,人与人之间的两维关系将被彻底打破,如何处理人与机器的感情问题,这将会产生一系列的伦理道德问题。
  • 其次,社会结构与秩序将会重组,人与机器在社会关系中的角色如何维持与平衡。

你可能感兴趣的:(人工智能)