1 主成分分析可视化结果
1.1 查看莺尾花数据集(前五行,前四列)
iris[1:5,-5] ## Sepal.Length Sepal.Width Petal.Length Petal.Width ## 1 5.1 3.5 1.4 0.2 ## 2 4.9 3.0 1.4 0.2 ## 3 4.7 3.2 1.3 0.2 ## 4 4.6 3.1 1.5 0.2 ## 5 5.0 3.6 1.4 0.2
1.2 使用莺尾花数据集进行主成分分析后可视化展示
library("ggplot2") library("ggbiplot") ## 载入需要的程辑包:plyr ## 载入需要的程辑包:scales ## 载入需要的程辑包:grid res.pca = prcomp(iris[,-5],scale=TRUE) ggbiplot(res.pca,obs.scale=1,var.scale=1,ellipse=TRUE,circle=TRUE)
#添加组别颜色 ggbiplot(res.pca,obs.scale=1,var.scale=1,ellipse=TRUE,circle=TRUE,groups=iris$Species)
#更改绘制主题 ggbiplot(res.pca, obs.scale = 1, var.scale = 1, ellipse = TRUE,groups = iris$Species, circle = TRUE) + theme_bw() + theme(panel.grid = element_blank()) + scale_color_brewer(palette = "Set2") + labs(title = "新主题",subtitle = "好看吗!",caption ="绘于:桂林")
2 圆环图绘制
#构造数据 df <- data.frame( group = c("Male", "Female", "Child"), value = c(10, 20, 30)) #ggpubr包绘制圆环图 library("ggpubr") ## ## 载入程辑包:'ggpubr' ## The following object is masked from 'package:plyr': ## ## mutate ggdonutchart(df, "value", label = "group", fill = "group", color = "white", palette = c("#00AFBB", "#E7B800", "#FC4E07") )
3 马赛克图绘制
3.1 构造数据
library(ggplot2) library(RColorBrewer) library(reshape2) #提供melt()函数 library(plyr) #提供ddply()函数,join()函数 df <- data.frame(segment = c("A", "B", "C","D"), Alpha = c(2400 ,1200, 600 ,250), Beta = c(1000 ,900, 600, 250), Gamma = c(400, 600 ,400, 250), Delta = c(200, 300 ,400, 250)) melt_df<-melt(df,id="segment") df ## segment Alpha Beta Gamma Delta ## 1 A 2400 1000 400 200 ## 2 B 1200 900 600 300 ## 3 C 600 600 400 400 ## 4 D 250 250 250 250 #计算出每行的最大,最小值,并计算每行各数的百分比。ddply()对data.frame分组计算,并利用join()函数进行两个表格连接。 segpct<-rowSums(df[,2:ncol(df)]) for (i in 1:nrow(df)){ for (j in 2:ncol(df)){ df[i,j]<-df[i,j]/segpct[i]*100 #将数字转换成百分比 } } segpct<-segpct/sum(segpct)*100 df$xmax <- cumsum(segpct) df$xmin <- (df$xmax - segpct) dfm <- melt(df, id = c("segment", "xmin", "xmax"),value.name="percentage") colnames(dfm)[ncol(dfm)]<-"percentage" #ddply()函数使用自定义统计函数,对data.frame分组计算 dfm1 <- ddply(dfm, .(segment), transform, ymax = cumsum(percentage)) dfm1 <- ddply(dfm1, .(segment), transform,ymin = ymax - percentage) dfm1$xtext <- with(dfm1, xmin + (xmax - xmin)/2) dfm1$ytext <- with(dfm1, ymin + (ymax - ymin)/2) #join()函数,连接两个表格data.frame dfm2<-join(melt_df, dfm1, by = c("segment", "variable"), type = "left", match = "all") dfm2 ## segment variable value xmin xmax percentage ymax ymin xtext ytext ## 1 A Alpha 2400 0 40 60 60 0 20 30.0 ## 2 B Alpha 1200 40 70 40 40 0 55 20.0 ## 3 C Alpha 600 70 90 30 30 0 80 15.0 ## 4 D Alpha 250 90 100 25 25 0 95 12.5 ## 5 A Beta 1000 0 40 25 85 60 20 72.5 ## 6 B Beta 900 40 70 30 70 40 55 55.0 ## 7 C Beta 600 70 90 30 60 30 80 45.0 ## 8 D Beta 250 90 100 25 50 25 95 37.5 ## 9 A Gamma 400 0 40 10 95 85 20 90.0 ## 10 B Gamma 600 40 70 20 90 70 55 80.0 ## 11 C Gamma 400 70 90 20 80 60 80 70.0 ## 12 D Gamma 250 90 100 25 75 50 95 62.5 ## 13 A Delta 200 0 40 5 100 95 20 97.5 ## 14 B Delta 300 40 70 10 100 90 55 95.0 ## 15 C Delta 400 70 90 20 100 80 80 90.0 ## 16 D Delta 250 90 100 25 100 75 95 87.5
3.2 ggplot2包的geom_rect()函数绘制马赛克图
ggplot()+ geom_rect(aes(ymin = ymin, ymax = ymax, xmin = xmin, xmax = xmax, fill = variable),dfm2,colour = "black") + geom_text(aes(x = xtext, y = ytext, label = value),dfm2 ,size = 4)+ geom_text(aes(x = xtext, y = 103, label = paste("Seg ", segment)),dfm2 ,size = 4)+ geom_text(aes(x = 102, y = seq(12.5,100,25), label = c("Alpha","Beta","Gamma","Delta")), size = 4,hjust = 0)+ scale_x_continuous(breaks=seq(0,100,25),limits=c(0,110))+ theme(panel.background=element_rect(fill="white",colour=NA), panel.grid.major = element_line(colour = "grey60",size=.25,linetype ="dotted" ), panel.grid.minor = element_line(colour = "grey60",size=.25,linetype ="dotted" ), text=element_text(size=15), legend.position="none")
3.3 vcd包的mosaic()函数绘制马赛克图
library(vcd) table<-xtabs(value ~variable+segment, melt_df) mosaic( ~segment+variable,table,shade=TRUE,legend=TRUE,color=TRUE)
包的mosaic()函数绘制马赛克图
library(vcd) table<-xtabs(value ~variable+segment, melt_df) mosaic( ~segment+variable,table,shade=TRUE,legend=TRUE,color=TRUE)
3.4 graphics包的mosaicplot()函数绘制马赛克图
library(graphics) library(wesanderson) #颜色提取 mosaicplot( ~segment+variable,table, color = wes_palette("GrandBudapest1"),main = '')
4 棒棒糖图绘制
4.1 查看内置示例数据
library(ggplot2) data("mtcars") df <- mtcars # 转换为因子 df$cyl <- as.factor(df$cyl) df$name <- rownames(df) head(df) ## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ## name ## Mazda RX4 Mazda RX4 ## Mazda RX4 Wag Mazda RX4 Wag ## Datsun 710 Datsun 710 ## Hornet 4 Drive Hornet 4 Drive ## Hornet Sportabout Hornet Sportabout ## Valiant Valiant
4.2 绘制基础棒棒糖图(使用ggplot2)
ggplot(df,aes(name,mpg)) + # 添加散点 geom_point(size=5) + # 添加辅助线段 geom_segment(aes(x=name,xend=name,y=0,yend=mpg))
4.2.1 更改点的大小,形状,颜色和透明度
ggplot(df,aes(name,mpg)) + # 添加散点 geom_point(size=5, color="red", fill=alpha("orange", 0.3), alpha=0.7, shape=21, stroke=3) + # 添加辅助线段 geom_segment(aes(x=name,xend=name,y=0,yend=mpg)) + theme_bw() + theme(axis.text.x = element_text(angle = 45,hjust = 1), panel.grid = element_blank())
4.2.2 更改辅助线段的大小,颜色和类型
ggplot(df,aes(name,mpg)) + # 添加散点 geom_point(aes(size=cyl,color=cyl)) + # 添加辅助线段 geom_segment(aes(x=name,xend=name,y=0,yend=mpg), size=1, color="blue", linetype="dotdash") + theme_classic() + theme(axis.text.x = element_text(angle = 45,hjust = 1), panel.grid = element_blank()) + scale_y_continuous(expand = c(0,0)) ## Warning: Using size for a discrete variable is not advised.
4.2.3 对点进行排序,坐标轴翻转
df <- df[order(df$mpg),] # 设置因子进行排序 df$name <- factor(df$name,levels = df$name) ggplot(df,aes(name,mpg)) + # 添加散点 geom_point(aes(color=cyl),size=8) + # 添加辅助线段 geom_segment(aes(x=name,xend=name,y=0,yend=mpg), size=1, color="gray") + theme_minimal() + theme( panel.grid.major.y = element_blank(), panel.border = element_blank(), axis.ticks.y = element_blank() ) + coord_flip()
4.3 绘制棒棒糖图(使用ggpubr)
library(ggpubr) # 查看示例数据 head(df) ## mpg cyl disp hp drat wt qsec vs am gear carb ## Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4 ## Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4 ## Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4 ## Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4 ## Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4 ## Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8 ## name ## Cadillac Fleetwood Cadillac Fleetwood ## Lincoln Continental Lincoln Continental ## Camaro Z28 Camaro Z28 ## Duster 360 Duster 360 ## Chrysler Imperial Chrysler Imperial ## Maserati Bora Maserati Bora
4.3.1 使用ggdotchart函数绘制棒棒糖图
ggdotchart(df, x = "name", y = "mpg", color = "cyl", # 设置按照cyl填充颜色 size = 6, # 设置点的大小 palette = c("#00AFBB", "#E7B800", "#FC4E07"), # 修改颜色画板 sorting = "ascending", # 设置升序排序 add = "segments", # 添加辅助线段 add.params = list(color = "lightgray", size = 1.5), # 设置辅助线段的大小和颜色 ggtheme = theme_pubr(), # 设置主题 )
4.3.2 自定义一些参数
ggdotchart(df, x = "name", y = "mpg", color = "cyl", # 设置按照cyl填充颜色 size = 8, # 设置点的大小 palette = "jco", # 修改颜色画板 sorting = "descending", # 设置降序排序 add = "segments", # 添加辅助线段 add.params = list(color = "lightgray", size = 1.2), # 设置辅助线段的大小和颜色 rotate = TRUE, # 旋转坐标轴方向 group = "cyl", # 设置按照cyl进行分组 label = "mpg", # 按mpg添加label标签 font.label = list(color = "white", size = 7, vjust = 0.5), # 设置label标签的字体颜色和大小 ggtheme = theme_pubclean(), # 设置主题 )
5 三相元图绘制
5.1 构建数据
test_data = data.frame(x = runif(100), y = runif(100), z = runif(100)) head(test_data) ## x y z ## 1 0.79555379 0.1121278 0.90667083 ## 2 0.12816648 0.8980756 0.51703604 ## 3 0.66631357 0.5757205 0.50830765 ## 4 0.87326608 0.2336119 0.05895517 ## 5 0.01087468 0.7611424 0.37542833 ## 6 0.77126494 0.2682030 0.49992176
5.1.1 R-ggtern包绘制三相元图
library(tidyverse) ## -- Attaching packages --------------------------------------- tidyverse 1.3.1 -- ## v tibble 3.1.3 v dplyr 1.0.7 ## v tidyr 1.1.3 v stringr 1.4.0 ## v readr 2.0.1 v forcats 0.5.1 ## v purrr 0.3.4 ## -- Conflicts ------------------------------------------ tidyverse_conflicts() -- ## x dplyr::arrange() masks plyr::arrange() ## x readr::col_factor() masks scales::col_factor() ## x purrr::compact() masks plyr::compact() ## x dplyr::count() masks plyr::count() ## x purrr::discard() masks scales::discard() ## x dplyr::failwith() masks plyr::failwith() ## x dplyr::filter() masks stats::filter() ## x dplyr::id() masks plyr::id() ## x dplyr::lag() masks stats::lag() ## x dplyr::mutate() masks ggpubr::mutate(), plyr::mutate() ## x dplyr::rename() masks plyr::rename() ## x dplyr::summarise() masks plyr::summarise() ## x dplyr::summarize() masks plyr::summarize() library(ggtern) ## Registered S3 methods overwritten by 'ggtern': ## method from ## grid.draw.ggplot ggplot2 ## plot.ggplot ggplot2 ## print.ggplot ggplot2 ## -- ## Remember to cite, run citation(package = 'ggtern') for further info. ## -- ## ## 载入程辑包:'ggtern' ## The following objects are masked from 'package:ggplot2': ## ## aes, annotate, ggplot, ggplot_build, ggplot_gtable, ggplotGrob, ## ggsave, layer_data, theme_bw, theme_classic, theme_dark, ## theme_gray, theme_light, theme_linedraw, theme_minimal, theme_void library(hrbrthemes) ## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes. ## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and ## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow library(ggtext) test_plot_pir <- ggtern(data = test_data,aes(x, y, z))+ geom_point(size=2.5)+ theme_rgbw(base_family = "") + labs(x="",y="", title = "Example Density/Contour Plot: GGtern Test", subtitle = "processed map charts with ggtern()", caption = "Visualization by DataCharm") + guides(color = "none", fill = "none", alpha = "none")+ theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black", size = 20, margin = margin(t = 1, b = 12)), plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15), plot.caption = element_markdown(face = 'bold',size = 12), ) test_plot_pir
5.1.2 优化处理
test_plot <- ggtern(data = test_data,aes(x, y, z),size=2)+ stat_density_tern(geom = 'polygon',n = 300, aes(fill = ..level.., alpha = ..level..))+ geom_point(size=2.5)+ theme_rgbw(base_family = "") + labs(x="",y="", title = "Example Density/Contour Plot: GGtern Test", subtitle = "processed map charts with ggtern()", caption = "Visualization by DataCharm") + scale_fill_gradient(low = "blue",high = "red") + #去除映射属性的图例 guides(color = "none", fill = "none", alpha = "none")+ theme( plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black", size = 20, margin = margin(t = 1, b = 12)), plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15), plot.caption = element_markdown(face = 'bold',size = 12), ) test_plot ## Warning: stat_density_tern: You have not specified a below-detection-limit (bdl) value (Ref. 'bdl' and 'bdl.val' arguments in ?stat_density_tern). Presently you have 2x value/s below a detection limit of 0.010, which acounts for 2.000% of your data. Density values at fringes may appear abnormally high attributed to the mathematics of the ILR transformation. ## You can either: ## 1. Ignore this warning, ## 2. Set the bdl value appropriately so that fringe values are omitted from the ILR calculation, or ## 3. Accept the high density values if they exist, and manually set the 'breaks' argument ## so that the countours at lower densities are represented appropriately.
6 华夫饼图绘制
6.1 数据准备
#相关包 library(ggplot2) library(RColorBrewer) library(reshape2) #数据生成 nrows <- 10 categ_table <- round(table(mpg$class ) * ((nrows*nrows)/(length(mpg$class)))) sort_table<-sort(categ_table,index.return=TRUE,decreasing = FALSE) Order<-sort(as.data.frame(categ_table)$Freq,index.return=TRUE,decreasing = FALSE) df <- expand.grid(y = 1:nrows, x = 1:nrows) df$category<-factor(rep(names(sort_table),sort_table), levels=names(sort_table)) Color<-brewer.pal(length(sort_table), "Set2") head(df) ## y x category ## 1 1 1 2seater ## 2 2 1 2seater ## 3 3 1 minivan ## 4 4 1 minivan ## 5 5 1 minivan ## 6 6 1 minivan
6.1.1 ggplot 包绘制
ggplot(df, aes(x = y, y = x, fill = category)) + geom_tile(color = "white", size = 0.25) + #geom_point(color = "black",shape=1,size=5) + coord_fixed(ratio = 1)+ #x,y 轴尺寸固定, ratio=1 表示 x , y 轴长度相同 scale_x_continuous(trans = 'reverse') +#expand = c(0, 0), scale_y_continuous(trans = 'reverse') +#expand = c(0, 0), scale_fill_manual(name = "Category", #labels = names(sort_table), values = Color)+ theme(#panel.border = element_rect(fill=NA,size = 2), panel.background = element_blank(), plot.title = element_text(size = rel(1.2)), axis.text = element_blank(), axis.title = element_blank(), axis.ticks = element_blank(), legend.title = element_blank(), legend.position = "right") ## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
6.1.2 点状华夫饼图ggplot绘制
library(ggforce) ggplot(df, aes(x0 = y, y0 = x, fill = category,r=0.5)) + geom_circle(color = "black", size = 0.25) + #geom_point(color = "black",shape=21,size=6) + coord_fixed(ratio = 1)+ scale_x_continuous(trans = 'reverse') +#expand = c(0, 0), scale_y_continuous(trans = 'reverse') +#expand = c(0, 0), scale_fill_manual(name = "Category", #labels = names(sort_table), values = Color)+ theme(#panel.border = element_rect(fill=NA,size = 2), panel.background = element_blank(), plot.title = element_text(size = rel(1.2)), legend.position = "right") ## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
6.1.3 堆积型华夫饼图
library(dplyr) nrows <- 10 ndeep <- 10 unit<-100 df <- expand.grid(y = 1:nrows, x = 1:nrows) categ_table <- as.data.frame(table(mpg$class) * (nrows*nrows)) colnames(categ_table)<-c("names","vals") categ_table<-arrange(categ_table,desc(vals)) categ_table$vals<-categ_table$vals /unit tb4waffles <- expand.grid(y = 1:ndeep,x = seq_len(ceiling(sum(categ_table$vals) / ndeep))) regionvec <- as.character(rep(categ_table$names, categ_table$vals)) tb4waffles<-tb4waffles[1:length(regionvec),] tb4waffles$names <- factor(regionvec,levels=categ_table$names) Color<-brewer.pal(nrow(categ_table), "Set2") ggplot(tb4waffles, aes(x = x, y = y, fill = names)) + #geom_tile(color = "white") + # geom_point(color = "black",shape=21,size=5) + # scale_fill_manual(name = "Category", values = Color)+ xlab("1 square = 100")+ ylab("")+ coord_fixed(ratio = 1)+ theme(#panel.border = element_rect(fill=NA,size = 2), panel.background = element_blank(), plot.title = element_text(size = rel(1.2)), #axis.text = element_blank(), #axis.title = element_blank(), #axis.ticks = element_blank(), # legend.title = element_blank(), legend.position = "right") ## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
6.1.4 waffle 包绘制(一个好用的包,专为华夫饼图做准备的)
#waffle(parts, rows = 10, keep = TRUE, xlab = NULL, title = NULL, colors = NA, size = 2, flip = FALSE, reverse = FALSE, equal = TRUE, pad = 0, use_glyph = FALSE, glyph_size = 12, legend_pos = "right") #parts 用于图表的值的命名向量 #rows 块的行数 #keep 保持因子水平(例如,在华夫饼图中获得一致的图例) library("waffle") parts <- c(One=80, Two=30, Three=20, Four=10) chart <- waffle(parts, rows=8) print(chart)
7 三维散点图绘制
7.1 简单绘制
library("plot3D") #以Sepal.Length为x轴,Sepal.Width为y轴,Petal.Length为z轴。绘制箱子型box = TRUE;旋转角度为theta = 60, phi = 20;透视转换强度的值为3d=3;按照2D图绘制正常刻度ticktype = "detailed";散点图的颜色设置bg="#F57446" pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1)) #改版画布版式大小 with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length, pch = 21, cex = 1.5,col="black",bg="#F57446", xlab = "Sepal.Length", ylab = "Sepal.Width", zlab = "Petal.Length", ticktype = "detailed",bty = "f",box = TRUE, theta = 60, phi = 20, d=3, colkey = FALSE) )
7.2 加入第四个变量,进行颜色分组
7.2.1 方法一
#可以将变量Petal.Width映射到数据点颜色中。该变量是连续性,如果想将数据按从小到大分成n类,则可以使用dplyr包中的ntile()函数,然后依次设置不同组的颜色bg=colormap[iris$quan],并根据映射的数值添加图例颜色条(colkey())。 library(tidyverse) iris = iris %>% mutate(quan = ntile(Petal.Width,6)) colormap <- colorRampPalette(rev(brewer.pal(11,'RdYlGn')))(6)#legend颜色配置 pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1)) # 绘图 with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length,pch = 21, cex = 1.5,col="black",bg=colormap[iris$quan], xlab = "Sepal.Length", ylab = "Sepal.Width", zlab = "Petal.Length", ticktype = "detailed",bty = "f",box = TRUE, theta = 60, phi = 20, d=3, colkey = FALSE) ) colkey (col=colormap,clim=range(iris$quan),clab = "Petal.Width", add=TRUE, length=0.4,side = 4)
7.2.2 方法二
#将第四维数据映射到数据点的大小上(cex = rescale(iris$quan, c(.5, 4)))这里我还“得寸进尺”的将颜色也来反应第四维变量,当然也可以用颜色反应第五维变量。 pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1)) with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length,pch = 21, cex = rescale(iris$quan, c(.5, 4)),col="black",bg=colormap[iris$quan], xlab = "Sepal.Length", ylab = "Sepal.Width", zlab = "Petal.Length", ticktype = "detailed",bty = "f",box = TRUE, theta = 30, phi = 15, d=2, colkey = FALSE) ) breaks =1:6 legend("right",title = "Weight",legend=breaks,pch=21, pt.cex=rescale(breaks, c(.5, 4)),y.intersp=1.6, pt.bg = colormap[1:6],bg="white",bty="n")
7.3 用rgl包的plot3d()进行绘制
library(rgl) #数据 mycolors <- c('royalblue1', 'darkcyan', 'oldlace') iris$color <- mycolors[ as.numeric(iris$Species) ] #绘制 plot3d( x=iris$`Sepal.Length`, y=iris$`Sepal.Width`, z=iris$`Petal.Length`, col = iris$color, type = 's', radius = .1, xlab="Sepal Length", ylab="Sepal Width", zlab="Petal Length")
总结
到此这篇关于R语言实现各种数据可视化的文章就介绍到这了,更多相关R语言实现数据可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!