R语言实现各种数据可视化的超详细教程

1 主成分分析可视化结果

1.1 查看莺尾花数据集(前五行,前四列)

iris[1:5,-5]
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1          5.1         3.5          1.4         0.2
## 2          4.9         3.0          1.4         0.2
## 3          4.7         3.2          1.3         0.2
## 4          4.6         3.1          1.5         0.2
## 5          5.0         3.6          1.4         0.2

1.2 使用莺尾花数据集进行主成分分析后可视化展示

library("ggplot2")
library("ggbiplot")
## 载入需要的程辑包:plyr
## 载入需要的程辑包:scales
## 载入需要的程辑包:grid
res.pca = prcomp(iris[,-5],scale=TRUE)
ggbiplot(res.pca,obs.scale=1,var.scale=1,ellipse=TRUE,circle=TRUE)

R语言实现各种数据可视化的超详细教程_第1张图片

#添加组别颜色
ggbiplot(res.pca,obs.scale=1,var.scale=1,ellipse=TRUE,circle=TRUE,groups=iris$Species)

R语言实现各种数据可视化的超详细教程_第2张图片

#更改绘制主题
ggbiplot(res.pca, obs.scale = 1, var.scale = 1, ellipse = TRUE,groups = iris$Species, circle = TRUE) +
  theme_bw() +
  theme(panel.grid = element_blank()) +
  scale_color_brewer(palette = "Set2") +
  labs(title = "新主题",subtitle = "好看吗!",caption ="绘于:桂林")

R语言实现各种数据可视化的超详细教程_第3张图片

2 圆环图绘制

#构造数据
df <- data.frame(
  group = c("Male", "Female", "Child"),
  value = c(10, 20, 30))
#ggpubr包绘制圆环图
library("ggpubr")
## 
## 载入程辑包:'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
ggdonutchart(df, "value",
             label = "group",                               
             fill = "group",                            
             color = "white",                                
             palette = c("#00AFBB", "#E7B800", "#FC4E07") 
)

R语言实现各种数据可视化的超详细教程_第4张图片

3 马赛克图绘制

3.1 构造数据

library(ggplot2)
library(RColorBrewer)
library(reshape2)  #提供melt()函数
library(plyr)      #提供ddply()函数,join()函数

df <- data.frame(segment = c("A", "B", "C","D"),
                      Alpha = c(2400    ,1200,  600 ,250),
                      Beta = c(1000 ,900,   600,    250),
                      Gamma = c(400,    600 ,400,   250),
                      Delta = c(200,    300 ,400,   250))

melt_df<-melt(df,id="segment")
df
##   segment Alpha Beta Gamma Delta
## 1       A  2400 1000   400   200
## 2       B  1200  900   600   300
## 3       C   600  600   400   400
## 4       D   250  250   250   250
#计算出每行的最大,最小值,并计算每行各数的百分比。ddply()对data.frame分组计算,并利用join()函数进行两个表格连接。
segpct<-rowSums(df[,2:ncol(df)])
for (i in 1:nrow(df)){
  for (j in 2:ncol(df)){
    df[i,j]<-df[i,j]/segpct[i]*100  #将数字转换成百分比
  }
}

segpct<-segpct/sum(segpct)*100
df$xmax <- cumsum(segpct)
df$xmin <- (df$xmax - segpct)

dfm <- melt(df, id = c("segment", "xmin", "xmax"),value.name="percentage")
colnames(dfm)[ncol(dfm)]<-"percentage"

#ddply()函数使用自定义统计函数,对data.frame分组计算
dfm1 <- ddply(dfm, .(segment), transform, ymax = cumsum(percentage))
dfm1 <- ddply(dfm1, .(segment), transform,ymin = ymax - percentage)
dfm1$xtext <- with(dfm1, xmin + (xmax - xmin)/2)
dfm1$ytext <- with(dfm1, ymin + (ymax - ymin)/2)

#join()函数,连接两个表格data.frame
dfm2<-join(melt_df, dfm1, by = c("segment", "variable"), type = "left", match = "all")
dfm2
##    segment variable value xmin xmax percentage ymax ymin xtext ytext
## 1        A    Alpha  2400    0   40         60   60    0    20  30.0
## 2        B    Alpha  1200   40   70         40   40    0    55  20.0
## 3        C    Alpha   600   70   90         30   30    0    80  15.0
## 4        D    Alpha   250   90  100         25   25    0    95  12.5
## 5        A     Beta  1000    0   40         25   85   60    20  72.5
## 6        B     Beta   900   40   70         30   70   40    55  55.0
## 7        C     Beta   600   70   90         30   60   30    80  45.0
## 8        D     Beta   250   90  100         25   50   25    95  37.5
## 9        A    Gamma   400    0   40         10   95   85    20  90.0
## 10       B    Gamma   600   40   70         20   90   70    55  80.0
## 11       C    Gamma   400   70   90         20   80   60    80  70.0
## 12       D    Gamma   250   90  100         25   75   50    95  62.5
## 13       A    Delta   200    0   40          5  100   95    20  97.5
## 14       B    Delta   300   40   70         10  100   90    55  95.0
## 15       C    Delta   400   70   90         20  100   80    80  90.0
## 16       D    Delta   250   90  100         25  100   75    95  87.5

3.2 ggplot2包的geom_rect()函数绘制马赛克图

ggplot()+
  geom_rect(aes(ymin = ymin, ymax = ymax, xmin = xmin, xmax = xmax, fill = variable),dfm2,colour = "black") +
  geom_text(aes(x = xtext, y = ytext,  label = value),dfm2 ,size = 4)+
  geom_text(aes(x = xtext, y = 103, label = paste("Seg ", segment)),dfm2 ,size = 4)+
  geom_text(aes(x = 102, y = seq(12.5,100,25), label = c("Alpha","Beta","Gamma","Delta")), size = 4,hjust = 0)+
  scale_x_continuous(breaks=seq(0,100,25),limits=c(0,110))+
  theme(panel.background=element_rect(fill="white",colour=NA),
        panel.grid.major = element_line(colour = "grey60",size=.25,linetype ="dotted" ),
        panel.grid.minor = element_line(colour = "grey60",size=.25,linetype ="dotted" ),
        text=element_text(size=15),
        legend.position="none")

R语言实现各种数据可视化的超详细教程_第5张图片

3.3 vcd包的mosaic()函数绘制马赛克图

library(vcd)
table<-xtabs(value ~variable+segment, melt_df)
mosaic( ~segment+variable,table,shade=TRUE,legend=TRUE,color=TRUE)

包的mosaic()函数绘制马赛克图

library(vcd)
table<-xtabs(value ~variable+segment, melt_df)
mosaic( ~segment+variable,table,shade=TRUE,legend=TRUE,color=TRUE)

R语言实现各种数据可视化的超详细教程_第6张图片

3.4 graphics包的mosaicplot()函数绘制马赛克图

library(graphics)
library(wesanderson) #颜色提取
mosaicplot( ~segment+variable,table, color = wes_palette("GrandBudapest1"),main = '')

4 棒棒糖图绘制

4.1 查看内置示例数据

library(ggplot2)
data("mtcars")
df <- mtcars
# 转换为因子
df$cyl <- as.factor(df$cyl)
df$name <- rownames(df)
head(df)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
##                                name
## Mazda RX4                 Mazda RX4
## Mazda RX4 Wag         Mazda RX4 Wag
## Datsun 710               Datsun 710
## Hornet 4 Drive       Hornet 4 Drive
## Hornet Sportabout Hornet Sportabout
## Valiant                     Valiant

4.2 绘制基础棒棒糖图(使用ggplot2)

ggplot(df,aes(name,mpg)) + 
  # 添加散点
  geom_point(size=5) + 
  # 添加辅助线段
  geom_segment(aes(x=name,xend=name,y=0,yend=mpg))

R语言实现各种数据可视化的超详细教程_第7张图片

4.2.1 更改点的大小,形状,颜色和透明度

ggplot(df,aes(name,mpg)) + 
  # 添加散点
  geom_point(size=5, color="red", fill=alpha("orange", 0.3), 
             alpha=0.7, shape=21, stroke=3) + 
  # 添加辅助线段
  geom_segment(aes(x=name,xend=name,y=0,yend=mpg)) +
  theme_bw() + 
  theme(axis.text.x = element_text(angle = 45,hjust = 1),
        panel.grid = element_blank())

R语言实现各种数据可视化的超详细教程_第8张图片

4.2.2 更改辅助线段的大小,颜色和类型

ggplot(df,aes(name,mpg)) + 
  # 添加散点
  geom_point(aes(size=cyl,color=cyl)) + 
  # 添加辅助线段
  geom_segment(aes(x=name,xend=name,y=0,yend=mpg),
               size=1, color="blue", linetype="dotdash") +
  theme_classic() + 
  theme(axis.text.x = element_text(angle = 45,hjust = 1),
        panel.grid = element_blank()) +
  scale_y_continuous(expand = c(0,0))
## Warning: Using size for a discrete variable is not advised.

R语言实现各种数据可视化的超详细教程_第9张图片

4.2.3 对点进行排序,坐标轴翻转

df <- df[order(df$mpg),]
# 设置因子进行排序
df$name <- factor(df$name,levels = df$name)

ggplot(df,aes(name,mpg)) + 
  # 添加散点
  geom_point(aes(color=cyl),size=8) + 
  # 添加辅助线段
  geom_segment(aes(x=name,xend=name,y=0,yend=mpg),
               size=1, color="gray") +
  theme_minimal() + 
  theme(
    panel.grid.major.y = element_blank(),
    panel.border = element_blank(),
    axis.ticks.y = element_blank()
  ) +
  coord_flip()

R语言实现各种数据可视化的超详细教程_第10张图片

4.3 绘制棒棒糖图(使用ggpubr)

library(ggpubr)
# 查看示例数据
head(df)
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
## Maserati Bora       15.0   8  301 335 3.54 3.570 14.60  0  1    5    8
##                                    name
## Cadillac Fleetwood   Cadillac Fleetwood
## Lincoln Continental Lincoln Continental
## Camaro Z28                   Camaro Z28
## Duster 360                   Duster 360
## Chrysler Imperial     Chrysler Imperial
## Maserati Bora             Maserati Bora

4.3.1 使用ggdotchart函数绘制棒棒糖图

ggdotchart(df, x = "name", y = "mpg",
           color = "cyl", # 设置按照cyl填充颜色
           size = 6, # 设置点的大小
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # 修改颜色画板
           sorting = "ascending", # 设置升序排序                        
           add = "segments", # 添加辅助线段
           add.params = list(color = "lightgray", size = 1.5), # 设置辅助线段的大小和颜色
           ggtheme = theme_pubr(), # 设置主题
)

R语言实现各种数据可视化的超详细教程_第11张图片

4.3.2 自定义一些参数

ggdotchart(df, x = "name", y = "mpg",
           color = "cyl", # 设置按照cyl填充颜色
           size = 8, # 设置点的大小
           palette = "jco", # 修改颜色画板
           sorting = "descending", # 设置降序排序                        
           add = "segments", # 添加辅助线段
           add.params = list(color = "lightgray", size = 1.2), # 设置辅助线段的大小和颜色
           rotate = TRUE, # 旋转坐标轴方向
           group = "cyl", # 设置按照cyl进行分组
           label = "mpg", # 按mpg添加label标签
           font.label = list(color = "white", 
                             size = 7, 
                             vjust = 0.5), # 设置label标签的字体颜色和大小
           ggtheme = theme_pubclean(), # 设置主题
)

R语言实现各种数据可视化的超详细教程_第12张图片

5 三相元图绘制

5.1 构建数据

test_data = data.frame(x = runif(100),
                       y = runif(100),
                       z = runif(100))
head(test_data)
##            x         y          z
## 1 0.79555379 0.1121278 0.90667083
## 2 0.12816648 0.8980756 0.51703604
## 3 0.66631357 0.5757205 0.50830765
## 4 0.87326608 0.2336119 0.05895517
## 5 0.01087468 0.7611424 0.37542833
## 6 0.77126494 0.2682030 0.49992176

5.1.1 R-ggtern包绘制三相元图

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.3     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## v purrr   0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::arrange()    masks plyr::arrange()
## x readr::col_factor() masks scales::col_factor()
## x purrr::compact()    masks plyr::compact()
## x dplyr::count()      masks plyr::count()
## x purrr::discard()    masks scales::discard()
## x dplyr::failwith()   masks plyr::failwith()
## x dplyr::filter()     masks stats::filter()
## x dplyr::id()         masks plyr::id()
## x dplyr::lag()        masks stats::lag()
## x dplyr::mutate()     masks ggpubr::mutate(), plyr::mutate()
## x dplyr::rename()     masks plyr::rename()
## x dplyr::summarise()  masks plyr::summarise()
## x dplyr::summarize()  masks plyr::summarize()
library(ggtern)
## Registered S3 methods overwritten by 'ggtern':
##   method           from   
##   grid.draw.ggplot ggplot2
##   plot.ggplot      ggplot2
##   print.ggplot     ggplot2
## --
## Remember to cite, run citation(package = 'ggtern') for further info.
## --
## 
## 载入程辑包:'ggtern'
## The following objects are masked from 'package:ggplot2':
## 
##     aes, annotate, ggplot, ggplot_build, ggplot_gtable, ggplotGrob,
##     ggsave, layer_data, theme_bw, theme_classic, theme_dark,
##     theme_gray, theme_light, theme_linedraw, theme_minimal, theme_void
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
##       Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
##       if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(ggtext)

test_plot_pir <- ggtern(data = test_data,aes(x, y, z))+
    geom_point(size=2.5)+
    theme_rgbw(base_family = "") +
    labs(x="",y="",
        title = "Example Density/Contour Plot: GGtern Test",
        subtitle = "processed map charts with ggtern()",
        caption = "Visualization by DataCharm") +
    guides(color = "none", fill = "none", alpha = "none")+
    theme(
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                             size = 20, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),
        plot.caption = element_markdown(face = 'bold',size = 12),
        )
test_plot_pir

R语言实现各种数据可视化的超详细教程_第13张图片

5.1.2 优化处理

test_plot <- ggtern(data = test_data,aes(x, y, z),size=2)+
    stat_density_tern(geom = 'polygon',n = 300,
                      aes(fill  = ..level..,
                          alpha = ..level..))+
    geom_point(size=2.5)+
    theme_rgbw(base_family = "") +
    labs(x="",y="",
        title = "Example Density/Contour Plot: GGtern Test",
        subtitle = "processed map charts with ggtern()",
        caption = "Visualization by DataCharm") +
    scale_fill_gradient(low = "blue",high = "red")  +
    #去除映射属性的图例
    guides(color = "none", fill = "none", alpha = "none")+ 
    theme(
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                             size = 20, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),
        plot.caption = element_markdown(face = 'bold',size = 12),
        )
test_plot
## Warning: stat_density_tern: You have not specified a below-detection-limit (bdl) value (Ref. 'bdl' and 'bdl.val' arguments in ?stat_density_tern). Presently you have 2x value/s below a detection limit of 0.010, which acounts for 2.000% of your data. Density values at fringes may appear abnormally high attributed to the mathematics of the ILR transformation. 
## You can either:
## 1. Ignore this warning,
## 2. Set the bdl value appropriately so that fringe values are omitted from the ILR calculation, or
## 3. Accept the high density values if they exist, and manually set the 'breaks' argument 
##    so that the countours at lower densities are represented appropriately.

R语言实现各种数据可视化的超详细教程_第14张图片

6 华夫饼图绘制

6.1 数据准备

#相关包
library(ggplot2)
library(RColorBrewer)
library(reshape2)
#数据生成
nrows <- 10
categ_table <- round(table(mpg$class ) * ((nrows*nrows)/(length(mpg$class))))
sort_table<-sort(categ_table,index.return=TRUE,decreasing = FALSE)
Order<-sort(as.data.frame(categ_table)$Freq,index.return=TRUE,decreasing = FALSE)
df <- expand.grid(y = 1:nrows, x = 1:nrows)
df$category<-factor(rep(names(sort_table),sort_table), levels=names(sort_table))
Color<-brewer.pal(length(sort_table), "Set2")
head(df)
##   y x category
## 1 1 1  2seater
## 2 2 1  2seater
## 3 3 1  minivan
## 4 4 1  minivan
## 5 5 1  minivan
## 6 6 1  minivan

6.1.1 ggplot 包绘制

ggplot(df, aes(x = y, y = x, fill = category)) +
geom_tile(color = "white", size = 0.25) +
#geom_point(color = "black",shape=1,size=5) +
coord_fixed(ratio = 1)+ #x,y 轴尺寸固定, ratio=1 表示 x , y 轴长度相同
scale_x_continuous(trans = 'reverse') +#expand = c(0, 0),
scale_y_continuous(trans = 'reverse') +#expand = c(0, 0),
scale_fill_manual(name = "Category",
#labels = names(sort_table),
values = Color)+
theme(#panel.border = element_rect(fill=NA,size = 2),
panel.background = element_blank(),
plot.title = element_text(size = rel(1.2)),
axis.text = element_blank(),
axis.title = element_blank(),
axis.ticks = element_blank(),
legend.title = element_blank(),
legend.position = "right")
## Coordinate system already present. Adding new coordinate system, which will replace the existing one.

R语言实现各种数据可视化的超详细教程_第15张图片

6.1.2 点状华夫饼图ggplot绘制

library(ggforce)
ggplot(df, aes(x0 = y, y0 = x, fill = category,r=0.5)) +
  geom_circle(color = "black", size = 0.25) +
  #geom_point(color = "black",shape=21,size=6) +
  coord_fixed(ratio = 1)+
  scale_x_continuous(trans = 'reverse') +#expand = c(0, 0),
  scale_y_continuous(trans = 'reverse') +#expand = c(0, 0),
  scale_fill_manual(name = "Category",
                    #labels = names(sort_table),
                    values = Color)+
  theme(#panel.border = element_rect(fill=NA,size = 2),
    panel.background  = element_blank(),
    plot.title = element_text(size = rel(1.2)),
    legend.position = "right")
## Coordinate system already present. Adding new coordinate system, which will replace the existing one.

R语言实现各种数据可视化的超详细教程_第16张图片

6.1.3 堆积型华夫饼图

library(dplyr)
nrows <- 10
ndeep <- 10
unit<-100
df <- expand.grid(y = 1:nrows, x = 1:nrows)

categ_table <- as.data.frame(table(mpg$class) * (nrows*nrows))
colnames(categ_table)<-c("names","vals")
categ_table<-arrange(categ_table,desc(vals))
categ_table$vals<-categ_table$vals /unit

tb4waffles <- expand.grid(y = 1:ndeep,x = seq_len(ceiling(sum(categ_table$vals) / ndeep)))
regionvec <- as.character(rep(categ_table$names, categ_table$vals))
tb4waffles<-tb4waffles[1:length(regionvec),]

tb4waffles$names <- factor(regionvec,levels=categ_table$names)

Color<-brewer.pal(nrow(categ_table), "Set2")
ggplot(tb4waffles, aes(x = x, y = y, fill = names)) +
  #geom_tile(color = "white") + #
  geom_point(color = "black",shape=21,size=5) + #
  scale_fill_manual(name = "Category",
                    values = Color)+
  xlab("1 square = 100")+
  ylab("")+
  coord_fixed(ratio = 1)+
  theme(#panel.border = element_rect(fill=NA,size = 2),
         panel.background  = element_blank(),
        plot.title = element_text(size = rel(1.2)),
        #axis.text = element_blank(),
        #axis.title = element_blank(),
        #axis.ticks = element_blank(),
        # legend.title = element_blank(),
        legend.position = "right")
## Coordinate system already present. Adding new coordinate system, which will replace the existing one.

R语言实现各种数据可视化的超详细教程_第17张图片

6.1.4 waffle 包绘制(一个好用的包,专为华夫饼图做准备的)

#waffle(parts, rows = 10, keep = TRUE, xlab = NULL, title = NULL, colors = NA, size = 2, flip = FALSE, reverse = FALSE, equal = TRUE, pad = 0, use_glyph = FALSE, glyph_size = 12, legend_pos = "right")
#parts 用于图表的值的命名向量
#rows 块的行数
#keep 保持因子水平(例如,在华夫饼图中获得一致的图例)
library("waffle")
parts <- c(One=80, Two=30, Three=20, Four=10)
chart <- waffle(parts, rows=8)
print(chart)

R语言实现各种数据可视化的超详细教程_第18张图片

7 三维散点图绘制

7.1 简单绘制

library("plot3D")
#以Sepal.Length为x轴,Sepal.Width为y轴,Petal.Length为z轴。绘制箱子型box = TRUE;旋转角度为theta = 60, phi = 20;透视转换强度的值为3d=3;按照2D图绘制正常刻度ticktype = "detailed";散点图的颜色设置bg="#F57446"
pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1)) #改版画布版式大小
with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length,
  pch = 21, cex = 1.5,col="black",bg="#F57446",
                   xlab = "Sepal.Length",
                   ylab = "Sepal.Width",
                   zlab = "Petal.Length", 
                   ticktype = "detailed",bty = "f",box = TRUE,
                   theta = 60, phi = 20, d=3,
                   colkey = FALSE)
)

R语言实现各种数据可视化的超详细教程_第19张图片

7.2 加入第四个变量,进行颜色分组

7.2.1 方法一

#可以将变量Petal.Width映射到数据点颜色中。该变量是连续性,如果想将数据按从小到大分成n类,则可以使用dplyr包中的ntile()函数,然后依次设置不同组的颜色bg=colormap[iris$quan],并根据映射的数值添加图例颜色条(colkey())。
library(tidyverse)
iris = iris %>% mutate(quan = ntile(Petal.Width,6))
colormap <- colorRampPalette(rev(brewer.pal(11,'RdYlGn')))(6)#legend颜色配置
pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1))
# 绘图
with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length,pch = 21, cex = 1.5,col="black",bg=colormap[iris$quan],
     xlab = "Sepal.Length",
     ylab = "Sepal.Width",
     zlab = "Petal.Length", 
     ticktype = "detailed",bty = "f",box = TRUE,
     theta = 60, phi = 20, d=3,
     colkey = FALSE)
)
colkey (col=colormap,clim=range(iris$quan),clab = "Petal.Width", add=TRUE, length=0.4,side = 4)

R语言实现各种数据可视化的超详细教程_第20张图片

7.2.2 方法二

#将第四维数据映射到数据点的大小上(cex = rescale(iris$quan, c(.5, 4)))这里我还“得寸进尺”的将颜色也来反应第四维变量,当然也可以用颜色反应第五维变量。
pmar <- par(mar = c(5.1, 4.1, 4.1, 6.1))
with(iris, scatter3D(x = Sepal.Length, y = Sepal.Width, z = Petal.Length,pch = 21, 
                     cex = rescale(iris$quan, c(.5, 4)),col="black",bg=colormap[iris$quan],
                     xlab = "Sepal.Length",
                     ylab = "Sepal.Width",
                     zlab = "Petal.Length", 
                     ticktype = "detailed",bty = "f",box = TRUE,
                     theta = 30, phi = 15, d=2,
                     colkey = FALSE)
)
breaks =1:6
legend("right",title =  "Weight",legend=breaks,pch=21,
       pt.cex=rescale(breaks, c(.5, 4)),y.intersp=1.6,
       pt.bg = colormap[1:6],bg="white",bty="n")

R语言实现各种数据可视化的超详细教程_第21张图片

7.3 用rgl包的plot3d()进行绘制

library(rgl)
#数据
mycolors <- c('royalblue1', 'darkcyan', 'oldlace')
iris$color <- mycolors[ as.numeric(iris$Species) ]
#绘制
plot3d( 
  x=iris$`Sepal.Length`, y=iris$`Sepal.Width`, z=iris$`Petal.Length`, 
  col = iris$color, 
  type = 's', 
  radius = .1,
  xlab="Sepal Length", ylab="Sepal Width", zlab="Petal Length")

总结

到此这篇关于R语言实现各种数据可视化的文章就介绍到这了,更多相关R语言实现数据可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的:(R语言实现各种数据可视化的超详细教程)