分类器的准确度评估方法

1 影响一个分类器错误率的因素
  (1)、训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。
  (2)、属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。因此,如果我们通过常识可以确认某个属性与目标无关,则将它从训练集中移走。
  (3)、属性中的信息。有时生成器不能从属性中获取足够的信息来正确、低错误率地预测标签(如试图根据某人眼睛的颜色来决定他的收入)。加入其他的属性(如职业、每周工作小时数和年龄),可以降低错误率。
  (4)、待预测记录的分布。如果待预测记录来自不同于训练集中记录的分布,那么错误率有可能很高。比如如果你从包含家用轿车数据的训练集中构造出分类器,那么试图用它来对包含许多运动用车辆的记录进行分类可能没多大用途,因为数据属性值的分布可能是有很大差别的。
2  评估方法
有两种方法可以用于对分类器的错误率进行评估,它们都假定待预测记录和训练集取
  自同样的样本分布。
  (1) 保留方法(Holdout):记录集中的一部分(通常是2/3)作为训练集,保留剩余的部分用作测试集。生成器使用2/3 的数据来构造分类器,然后使用这个分类器来对测试集进行分类,得出的错误率就是评估错误率。虽然这种方法速度快,但由于仅使用2/3 的数据来构造分类器,因此它没有充分利用所有的数据来进行学习。如果使用所有的数据,那么可能构造出更精确的分类器。
  (2) 交叉纠错方法(Cross validation):数据集被分成k 个没有交叉数据的子集,所有子集的大小大致相同。生成器训练和测试共k 次;每一次,生成器使用去除一个子集的剩余数据作为训练集,然后在被去除的子集上进行测试。把所有得到的错误率的平均值作为评估错误率。交叉纠错法可以被重复多次(t),对于一个t 次k 分的交叉纠错法,k *t 个分类器被构造并被评估,这意味着交叉纠错法的时间是分类器构造时间的k *t 倍。增加重复的次数意味着运行时间的增长和错误率评估的改善。我们可以对k 的值进行调整,将它减少到3 或5,这样可以缩短运行时间。然而,减小训练集有可能使评估产生更大的偏差。通常Holdout 评估方法被用在最初试验性的场合,或者多于5000 条记录的数据集;交叉纠错法被用于建立最终的分类器,或者很小的数据集。

你可能感兴趣的:(ML)