深度学习框架TensorFlow一经发布,就受到了广泛的关注,并在计算机视觉、音频处理、推荐系统和自然语言处理等场景下都被大面积推广使用,现在已发布2.3.0版本,接下来我们深入浅出的介绍Tensorflow的相关应用。
TensorFlow的依赖视图如下所示:
TensorFlow 2.0 将专注于简单性和易用性,工作流程如下所示:
1、使用tf.data加载数据。 使用tf.data实例化读取训练数据和测试数据
2、模型的建立与调试: 使用动态图模式 Eager Execution 和著名的神经网络高层 API 框架 Keras,结合可视化工具 TensorBoard,简易、快速地建立和调试模型;
3、模型的训练: 支持 CPU / 单 GPU / 单机多卡 GPU / 多机集群 / TPU 训练模型,充分利用海量数据和计算资源进行高效训练;
4、预训练模型调用: 通过 TensorFlow Hub,可以方便地调用预训练完毕的已有成熟模型。
5、模型的部署: 通过 TensorFlow Serving、TensorFlow Lite、TensorFlow.js 等组件,可以将TensorFlow 模型部署到服务器、移动端、嵌入式端等多种使用场景;
安装 TensorFlow在64 位系统上测试这些系统支持 TensorFlow:
进入虚拟环境当中再安装。推荐使用anoconda进行安装
ubuntu安装
pip install tensorflow==2.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install tensorflow-gpu==2.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
注:如果需要下载GPU版本的(TensorFlow只提供windows和linux版本的,没有Macos版本的)。
张量是一个多维数组。 与NumPy ndarray对象类似,tf.Tensor对象也具有数据类型和形状。如下图所示:
此外,tf.Tensors可以保留在GPU中。 TensorFlow提供了丰富的操作库(tf.add,tf.matmul,tf.linalg.inv等),它们使用和生成tf.Tensor。在进行张量操作之前先导入相应的工具包:
import tensorflow as tf
import numpy as np
1.基本方法
首先让我们创建基础的张量:
# 创建int32类型的0维张量,即标量
rank_0_tensor = tf.constant(4)
print(rank_0_tensor)
# 创建float32类型的1维张量
rank_1_tensor = tf.constant([2.0, 3.0, 4.0])
print(rank_1_tensor)
# 创建float16类型的二维张量
rank_2_tensor = tf.constant([[1, 2],
[3, 4],
[5, 6]], dtype=tf.float16)
print(rank_2_tensor)
输出结果为:
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor([2. 3. 4.], shape=(3,), dtype=float32)
tf.Tensor(
[[1. 2.]
[3. 4.]
[5. 6.]], shape=(3, 2), dtype=float16)
我们也可以创建更高维的张量:
# 创建float32类型的张量
rank_3_tensor = tf.constant([
[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]],
[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]],])
print(rank_3_tensor)
该输出结果我们有更多的方式将其展示出来:
2.转换成numpy
我们可将张量转换为numpy中的ndarray的形式,转换方法有两种,以张量rank_2_tensor为例:
np.array(rank_2_tensor)
rank_2_tensor.numpy()
3.常用函数
我们可以对张量做一些基本的数学运算,包括加法、元素乘法和矩阵乘法等:
# 定义张量a和b
a = tf.constant([[1, 2],
[3, 4]])
b = tf.constant([[1, 1],
[1, 1]])
print(tf.add(a, b), "\n") # 计算张量的和
print(tf.multiply(a, b), "\n") # 计算张量的元素乘法
print(tf.matmul(a, b), "\n") # 计算乘法
输出结果为:
tf.Tensor(
[[2 3]
[4 5]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[1 2]
[3 4]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[3 3]
[7 7]], shape=(2, 2), dtype=int32)
另外张量也可用于各种聚合运算:
tf.reduce_sum() # 求和
tf.reduce_mean() # 平均值
tf.reduce_max() # 最大值
tf.reduce_min() # 最小值
tf.argmax() # 最大值的索引
tf.argmin() # 最小值的索引
例如:
c = tf.constant([[4.0, 5.0], [10.0, 1.0]])
# 最大值
print(tf.reduce_max(c))
# 最大值索引
print(tf.argmax(c))
# 计算均值
print(tf.reduce_mean(c))
输出为:
tf.Tensor(10.0, shape=(), dtype=float32)
tf.Tensor([1 0], shape=(2,), dtype=int64)
tf.Tensor(5.0, shape=(), dtype=float32)
4.变量
变量是一种特殊的张量,形状是不可变,但可以更改其中的参数。定义时的方法是:
my_variable = tf.Variable([[1.0, 2.0], [3.0, 4.0]])
我们也可以获取它的形状,类型及转换为ndarray:
print("Shape: ",my_variable.shape)
print("DType: ",my_variable.dtype)
print("As NumPy: ", my_variable.numpy)
输出为:
Shape: (2, 2)
DType:
As NumPy: >