【矩阵论】1.准备知识——复数域上的内积域正交阵

矩阵论
1. 准备知识——复数域上的矩阵与换位公式)
1. 准备知识——复数域上的内积域正交阵
1. 准备知识——相似对角化与合同&正定阵
2. 矩阵分解—— SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——乔利斯分解&平方根公式
2. 矩阵分解——正规谱分解——正规阵
2. 矩阵分解——正规分解
2. 矩阵分解——单阵及特征值特征向量一些求法


1.7 内积

X = ( x 1 x 2 ⋮ x n ) , Y = ( y 1 y 2 ⋮ y n ) ∈ C n \begin{aligned} &X=\left( \begin{matrix} x_1\\x_2\\\vdots\\x_n \end{matrix} \right),Y=\left( \begin{matrix} y_1\\y_2\\\vdots\\y_n \end{matrix} \right)\in C^n \end{aligned} X= x1x2xn ,Y= y1y2yn Cn

1.7.1 复向量内积

( X , Y ) = Δ Y H X = x 1 y 1 ‾ + x 2 y 2 ‾ + ⋯ + x n y n ‾ = ∑ i = 1 n x i y i ‾ = t r ( Y H X ) ( Y , X ) = X H Y = x 1 ‾ y 1 + x 2 ‾ y 2 + ⋯ + x n ‾ y 1 = ∑ i = 1 n x i ‾ y i = t r ( X H Y ) \begin{aligned} (X,Y)&\overset{\Delta}{=}Y^HX=x_1\overline{y_1}+x_2\overline{y_2}+\cdots+x_n\overline{y_n}=\sum\limits_{i=1}\limits^{n}x_i\overline{y_i}\\ &=tr(Y^HX)\\ (Y,X)&=X^HY=\overline{x_1}y_1+\overline{x_2}y_2+\cdots+\overline{x_n}y_1=\sum\limits_{i=1}\limits^{n}\overline{x_i}y_i\\ &=tr(X^HY) \end{aligned} (X,Y)(Y,X)=ΔYHX=x1y1+x2y2++xnyn=i=1nxiyi=tr(YHX)=XHY=x1y1+x2y2++xny1=i=1nxiyi=tr(XHY)

若取Y=X,则其内积
( X , X ) = X H X = x 1 x 1 ‾ + x 2 x 2 ‾ + ⋯ + x n x n ‾ = ∑ i = 1 n x i x i ‾ = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ + ∣ x n ∣ 2 = ∣ X ∣ 2 = t r ( X H X ) = t r ( X X H ) \begin{aligned} (X,X)&=X^HX=x_1\overline{x_1}+x_2\overline{x_2}+\cdots+x_n\overline{x_n}=\sum\limits_{i=1}\limits^{n}x_i\overline{x_i}\\ &=\vert x_1 \vert^2+\vert x_2 \vert^2+\cdots+\vert x_n \vert^2 = \vert X \vert^2\\ &=tr(X^HX)=tr(XX^H) \end{aligned} (X,X)=XHX=x1x1+x2x2++xnxn=i=1nxixi=x12+x22++xn2=X2=tr(XHX)=tr(XXH)

向量内积性质

  1. ( X , X ) ≥ 0 (X,X)\ge 0 (X,X)0 ;若 X ≠ 0 , ( X , X ) ≥ 0 X\neq 0 ,(X,X)\ge 0 X=0,(X,X)0
  2. ( X , Y ) = ( Y , X ) ‾ (X,Y)=\overline{(Y,X)} (X,Y)=(Y,X)
  3. ( k X , Y ) = k ( X , Y ) , ( X , k Y ) = k ‾ ( X , Y ) (kX,Y)=k(X,Y),(X,kY)=\overline{k}(X,Y) (kX,Y)=k(X,Y),(X,kY)=k(X,Y)
  4. (X+Y,W)=(X,Y)+(X,W)
  5. ∣ ( X , Y ) ∣ 2 ≤ ∣ X ∣ ⋅ ∣ Y ∣ \vert (X,Y) \vert^2\le \vert X \vert\cdot\vert Y \vert (X,Y)2XY

1.7.2 复矩阵内积

定义

( A , B ) = Δ t r ( A B H ) = t r ( A H B ) = ∑ a i j b i j ‾ , A , B ∈ C m , n ( A , A ) = t r ( A A H ) = t r ( A H A ) = ∑ a i j a i j ‾ = ∑ ∣ a i j ∣ 2 \begin{aligned} &(A,B)\overset{\Delta}{=}tr(AB^H)=tr(A^HB)=\sum a_{ij}\overline{b_{ij}},A,B\in C^{m,n}\\ &(A,A)=tr(AA^H)=tr(A^HA)=\sum a_{ij}\overline{a_{ij}}=\sum \vert a_{ij} \vert^2 \end{aligned} (A,B)=Δtr(ABH)=tr(AHB)=aijbij,A,BCm,n(A,A)=tr(AAH)=tr(AHA)=aijaij=aij2

矩阵A的模长: ∣ ∣ A ∣ ∣ = ( A , A ) = t r ( A A H ) = ∑ ∣ a i j ∣ 2 \vert \vert A \vert \vert=\sqrt{(A,A)}=\sqrt{tr(AA^H)}=\sqrt{\sum\vert a_{ij} \vert^2} ∣∣A∣∣=(A,A) =tr(AAH) =aij2

在这里插入图片描述

性质

  1. ( A , A ) = t r ( A A H ) = ∑ ∣ a i j ∣ 2 ≥ 0 (A,A)=tr(AA^H)=\sum\vert a_{ij} \vert^2 \ge 0 (A,A)=tr(AAH)=aij20 ;若 A ≠ 0 A\neq 0 A=0 ,则 ( A , A ) > 0 (A,A)>0 (A,A)>0

  2. ( A , B ) = ( B , A ) ‾ (A,B)=\overline{(B,A)} (A,B)=(B,A)

  3. ( k A , B ) = k ( A , B ) , ( A , k B ) = k ‾ ( A , B ) (kA,B)=k(A,B),(A,kB)=\overline{k}(A,B) (kA,B)=k(A,B),(A,kB)=k(A,B)

  4. (A+B,D)=(A,D)+(B,D),(D,A+B)=(D,A)+(D,B)

  5. ∣ ( A , B ) ∣ 2 ≤ ∣ A ∣ ⋅ ∣ B ∣ \vert (A,B) \vert^2 \le \vert A\vert\cdot\vert B \vert (A,B)2AB

矩阵的内积形式

列分块

A = ( a 11 ⋯ a 1 p ⋮ ⋱ ⋮ a n 1 ⋯ a n p ) ∈ C n × p = ( α 1 , ⋯   , α p ) , 其中 α i 为 n 维列向量 ( n × 1 阶矩阵 ) A H = ( a 11 ‾ ⋯ a n 1 ‾ ⋮ ⋱ ⋮ a 1 p ‾ ⋯ a n p ‾ ) ∈ C p × n = ( α 1 ‾ T ⋮ α p ‾ T ) ,其中 α 1 ‾ T 是 n 维行向量 ( 1 × n 阶矩阵 ) \begin{aligned} A&=\left( \begin{matrix} &a_{11}\quad&\cdots&a_{1p}\\ &\vdots\quad&\ddots&\vdots\\ &a_{n1}\quad&\cdots&a_{np} \end{matrix} \right)\in C^{n\times p}\\ &=(\alpha_1,\cdots,\alpha_p),其中\alpha_i为n维列向量(n\times 1阶矩阵)\\\\ A^H&=\left( \begin{matrix} &\overline{a_{11}}\quad&\cdots\quad &\overline{a_{n1}}\\ &\vdots\quad &\ddots&\vdots\\ &\overline{a_{1p}}\quad&\cdots\quad &\overline{a_{np}}\\ \end{matrix} \right)\in C^{p\times n}\\ &=\left( \begin{matrix} \overline{\alpha_1}^T\\ \vdots\\ \overline{\alpha_p}^T \end{matrix} \right),其中\overline{\alpha_1}^T是n维行向量(1\times n阶矩阵)\\\\ \end{aligned} AAH= a11an1a1panp Cn×p=(α1,,αp),其中αin维列向量(n×1阶矩阵)= a11a1pan1anp Cp×n= α1TαpT ,其中α1Tn维行向量(1×n阶矩阵)

A H A = ( α 1 ‾ T ⋮ α p ‾ T ) ( α 1 , ⋯   , α p ) = ( α 1 ‾ T α 1 α 1 ‾ T α 2 ⋯ α 1 ‾ T α p α 2 ‾ T α 1 α 2 ‾ T α 2 ⋯ α 2 ‾ T α p ⋮ ⋮ ⋱ ⋮ α p ‾ T α 1 α p ‾ T α 2 ⋯ α p ‾ T α p ) = ( ( α 1 , α 1 ) ( α 2 , α 1 ) ⋯ ( α p , α 1 ) ( α 1 , α 2 ) ( α 2 , α 2 ) ⋯ ( α p , α 2 ) ⋮ ⋮ ⋱ ⋮ ( α 1 , α p ) ( α 2 , α p ) ⋯ ( α p , α p ) ) = ( ( α 1 , α 1 ) ‾ ( α 1 , α 2 ) ‾ ⋯ ( α 1 , α p ) ‾ ( α 2 , α 1 ) ‾ ( α 2 , α 2 ) ‾ ⋯ ( α 2 , α p ) ‾ ⋮ ⋮ ⋱ ⋮ ( α p , α 1 ) ‾ ( α p , α 2 ) ‾ ⋯ ( α p , α p ) ‾ ) \begin{aligned} A^HA&=\left( \begin{matrix} \overline{\alpha_1}^T\\ \vdots\\ \overline{\alpha_p}^T \end{matrix} \right)(\alpha_1,\cdots,\alpha_p)\\\\ &=\left( \begin{matrix} &\overline{\alpha_1}^T\alpha_1\quad&\overline{\alpha_1}^T\alpha_2\quad &\cdots&\overline{\alpha_1}^T\alpha_p\\ &\overline{\alpha_2}^T\alpha_1\quad&\overline{\alpha_2}^T\alpha_2\quad &\cdots&\overline{\alpha_2}^T\alpha_p\\ &\vdots\quad&\vdots\quad &\ddots\quad &\vdots\\ &\overline{\alpha_p}^T\alpha_1\quad&\overline{\alpha_p}^T\alpha_2\quad &\cdots&\overline{\alpha_p}^T\alpha_p \end{matrix} \right)\\\\ &=\left( \begin{matrix} &(\alpha_1,\alpha_1)\quad &(\alpha_2,\alpha_1)\quad&\cdots\quad &(\alpha_p,\alpha_1)\\ &(\alpha_1,\alpha_2)\quad &(\alpha_2,\alpha_2)\quad&\cdots\quad &(\alpha_p,\alpha_2)\\ &\vdots\quad&\vdots\quad &\ddots\quad &\vdots\\ &(\alpha_1,\alpha_p)\quad &(\alpha_2,\alpha_p)\quad&\cdots\quad &(\alpha_p,\alpha_p) \end{matrix} \right)\\\\ &=\left( \begin{matrix} &\overline{(\alpha_1,\alpha_1)}\quad &\overline{(\alpha_1,\alpha_2)}\quad&\cdots\quad &\overline{(\alpha_1,\alpha_p)}\\ &\overline{(\alpha_2,\alpha_1)}\quad &\overline{(\alpha_2,\alpha_2)}\quad&\cdots\quad &\overline{(\alpha_2,\alpha_p)}\\ &\vdots\quad&\vdots\quad &\ddots\quad &\vdots\\ &\overline{(\alpha_p,\alpha_1)}\quad &\overline{(\alpha_p,\alpha_2)}\quad&\cdots\quad &\overline{(\alpha_p,\alpha_p)} \end{matrix} \right)\\ \end{aligned} AHA= α1TαpT (α1,,αp)= α1Tα1α2Tα1αpTα1α1Tα2α2Tα2αpTα2α1Tαpα2TαpαpTαp = (α1,α1)(α1,α2)(α1,αp)(α2,α1)(α2,α2)(α2,αp)(αp,α1)(αp,α2)(αp,αp) = (α1,α1)(α2,α1)(αp,α1)(α1,α2)(α2,α2)(αp,α2)(α1,αp)(α2,αp)(αp,αp)

行分块

A = ( a 11 ⋯ a 1 p ⋮ ⋱ ⋮ a n 1 ⋯ a n p ) ∈ C n × p = ( α 1 α 2 ⋮ α n ) , 其中 α i 为 p 维行向量 ( 1 × p 阶矩阵 ) A H = ( α 1 ‾ T α 2 ‾ T ⋯ α n ‾ T ) , 其中 α i ‾ T 为 p 维列向量 ( p × 1 阶矩阵 ) \begin{aligned} A&=\left( \begin{matrix} &a_{11}\quad&\cdots&a_{1p}\\ &\vdots\quad&\ddots&\vdots\\ &a_{n1}\quad&\cdots&a_{np} \end{matrix} \right)\in C^{n\times p}\\ &=\left( \begin{matrix} \alpha_1\\ \alpha_2\\ \vdots\\ \alpha_n \end{matrix} \right),其中\alpha_i为p维行向量(1\times p阶矩阵)\\\\ A^H&=\left( \begin{matrix} \overline{\alpha_1}^T\quad \overline{\alpha_2}^T\quad \cdots\quad \overline{\alpha_n}^T \end{matrix} \right),其中\overline{\alpha_i}^T 为p维列向量(p\times 1阶矩阵) \end{aligned} AAH= a11an1a1panp Cn×p= α1α2αn ,其中αip维行向量(1×p阶矩阵)=(α1Tα2TαnT),其中αiTp维列向量(p×1阶矩阵)

A A H = ( α 1 α 2 ⋮ α n ) ( α 1 ‾ T α 2 ‾ T ⋯ α n ‾ T ) = ( α 1 α 1 ‾ T α 1 α 2 ‾ T ⋯ α 1 α n ‾ T α 2 α 1 ‾ T α 2 α 2 ‾ T ⋯ α 2 α n ‾ T ⋮ ⋮ ⋱ ⋮ α n α 1 ‾ T α n α 2 ‾ T ⋯ α n α n ‾ T ) = ( ( α 1 , α 1 ) ( α 1 , α 2 ) ⋯ ( α 1 , α n ) ( α 2 , α 1 ) ( α 2 , α 2 ) ⋯ ( α 2 , α n ) ⋮ ⋮ ⋱ ⋮ ( α n , α 1 ) ( α n , α 2 ) ⋯ ( α n , α n ) ) \begin{aligned} AA^H&=\left( \begin{matrix} \alpha_1\\ \alpha_2\\ \vdots\\ \alpha_n \end{matrix} \right)\left( \begin{matrix} \overline{\alpha_1}^T\quad \overline{\alpha_2}^T\quad \cdots\quad \overline{\alpha_n}^T \end{matrix} \right)\\\\ &=\left( \begin{matrix} &\alpha_1\overline{\alpha_1}^T\quad &\alpha_1\overline{\alpha_2}^T\quad&\cdots\quad &\alpha_1\overline{\alpha_n}^T\\ &\alpha_2\overline{\alpha_1}^T\quad &\alpha_2\overline{\alpha_2}^T\quad&\cdots\quad &\alpha_2\overline{\alpha_n}^T\\ &\vdots\quad &\vdots\quad &\ddots\quad &\vdots\\ &\alpha_n\overline{\alpha_1}^T &\quad\alpha_n\overline{\alpha_2}^T\quad&\cdots\quad &\alpha_n\overline{\alpha_n}^T \end{matrix} \right)\\\\ &=\left( \begin{matrix} &(\alpha_1,\alpha_1)\quad &(\alpha_1,\alpha_2)\quad &\cdots\quad &(\alpha_1,\alpha_n)\\ &(\alpha_2,\alpha_1)\quad &(\alpha_2,\alpha_2)\quad &\cdots\quad &(\alpha_2,\alpha_n)\\ &\vdots\quad &\vdots\quad &\ddots\quad &\vdots\\ &(\alpha_n,\alpha_1)\quad &(\alpha_n,\alpha_2)\quad &\cdots\quad &(\alpha_n,\alpha_n) \end{matrix} \right) \end{aligned} AAH= α1α2αn (α1Tα2TαnT)= α1α1Tα2α1Tαnα1Tα1α2Tα2α2Tαnα2Tα1αnTα2αnTαnαnT = (α1,α1)(α2,α1)(αn,α1)(α1,α2)(α2,α2)(αn,α2)(α1,αn)(α2,αn)(αn,αn)

1.8 正交

1.8.1 向量正交

X = ( x 1 x 2 ⋮ x n ) , Y = ( y 1 y 2 ⋮ y n ) ∈ C n \begin{aligned} X&=\left( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right),Y=\left( \begin{matrix} y_1\\ y_2\\ \vdots\\ y_n \end{matrix} \right)\in C^{n} \end{aligned} X= x1x2xn ,Y= y1y2yn Cn

X ⊥ Y    ⟺    ( X , Y ) = 0 = x 1 y 1 ‾ + x 2 y 2 ‾ + ⋯ + x n y n ‾ = x 1 ‾ y 1 + x 2 ‾ y 2 + ⋯ + x n ‾ y n ‾ = ( Y , X ) \begin{aligned} X\bot Y\iff (X,Y)=0&=x_1\overline{y_1}+x_2\overline{y_2}+\cdots+x_n\overline{y_n}\\ &=\overline{\overline{x_1}y_1+\overline{x_2}y_2+\cdots+\overline{x_n}y_n}\\=(Y,X) \end{aligned} XY(X,Y)=0=(Y,X)=x1y1+x2y2++xnyn=x1y1+x2y2++xnyn

正交性质

  1. X ⊥ Y ⇒ a X ⊥ b Y X\bot Y\Rightarrow aX\bot bY XYaXbY

    证: ( a X , b Y ) = b ‾ Y H a X = a b ‾ Y H X = a b ‾ ( X , Y ) = 0 (aX,bY)=\overline{b}Y^HaX=a\overline{b}Y^HX=a\overline{b}(X,Y)=0 (aX,bY)=bYHaX=abYHX=ab(X,Y)=0

  2. 勾股定理: X 1 ⊥ X 2 ⊥ ⋯ ± X n ⇒ ∣ c 1 X 1 ± c 2 X 2 ± ⋯ ± c n X n ∣ 2 = ∣ c 1 X 1 ∣ 2 + ∣ c 2 X 2 ∣ 2 + ⋯ + ∣ c n X n ∣ 2 X_1\bot X_2\bot \cdots \pm X_n\Rightarrow \vert c_1X_1\pm c_2X_2\pm \cdots \pm c_nX_n\vert^2=\vert c_1X_1\vert^2+\vert c_2X_2\vert^2+\cdots+\vert c_nX_n\vert^2 X1X2±Xnc1X1±c2X2±±cnXn2=c1X12+c2X22++cnXn2

    此时, X 1 , X 2 , ⋯   , x n X_1,X_2,\cdots,x_n X1,X2,,xn 称为一个正交组

1.8.2 单位向量

X ≠ 0 ⃗ X\neq \vec{0} X=0 X ∣ X ∣ \frac{X}{\vert X \vert} XX 是一个单位向量( ∣ X ∣ X ∣ ∣ = 1 \vert \frac{X}{\vert X \vert} \vert=1 XX=1

【矩阵论】1.准备知识——复数域上的内积域正交阵_第1张图片

1.8.3 U阵(正交阵)

预:非单位列向量

半:p个n维列向量(p

预-半U阵(预-半正交阵)

α 1 , α 2 , ⋯   , α p 是 n 维列向量,且 p ≤ n ,且 α 1 ⊥ α 2 ⊥ ⋯ ⊥ α p 则称 A = ( α 1 , α 2 , ⋯   , α p ) 为预半 U 阵 \alpha_1,\alpha_2,\cdots,\alpha_p 是n维列向量,且p\le n,且\alpha_1\bot\alpha_2\bot \cdots\bot\alpha_p\\ 则称A=(\alpha_1,\alpha_2,\cdots,\alpha_p) 为预半U阵 α1,α2,,αpn维列向量,且pn,且α1α2αp则称A=(α1,α2,,αp)为预半U

判定

A = ( α 1 , α 2 , ⋯   , α p ) 是预半 U 阵    ⟺    A H A = ( ( α 1 , α 1 ) ⋯ 0 ⋮ ⋱ 0 0 ⋯ ( α p , α p ) ) 是对角阵 其中, α 1 , α 2 , ⋯   , α p 是 n 维列向量 \begin{aligned} A&=(\alpha_1,\alpha_2,\cdots,\alpha_p) 是预半U阵\\ &\iff A^HA=\left( \begin{matrix} &(\alpha_1,\alpha_1)&\cdots&0\\ &\vdots&\ddots&0\\ &0&\cdots&(\alpha_p,\alpha_p) \end{matrix} \right)是对角阵\\ &其中,\alpha_1,\alpha_2,\cdots,\alpha_p是n维列向量 \end{aligned} A=(α1,α2,,αp)是预半UAHA= (α1,α1)000(αp,αp) 是对角阵其中,α1,α2,,αpn维列向量

证明:

【矩阵论】1.准备知识——复数域上的内积域正交阵_第2张图片

区分 A H A A^HA AHA p × p p \times p p×p 阶满秩方阵,而 A A H AA^H AAH n × n n\times n n×n 不满秩方阵

半U阵(半正交阵)

A = ( α 1 , α 2 , ⋯   , α p ) 是预半 U 阵,其中 α i 是 n 维列向量,若满足 ∣ α 1 ∣ = ∣ α 2 ∣ = ⋯ = ∣ α p ∣ = 1 , 则 A 为半 U 阵 \begin{aligned} &A=(\alpha_1,\alpha_2,\cdots,\alpha_p)是预半U阵,其中\alpha_i是n维列向量,若满足\\ &\vert \alpha_1 \vert=\vert \alpha_2 \vert=\cdots=\vert \alpha_p \vert = 1,则A为半U阵 \end{aligned} A=(α1,α2,,αp)是预半U阵,其中αin维列向量,若满足α1=α2==αp=1,A为半U

判定

A = ( α 1 , ⋯   , α p ) 是半 U 阵    ⟺    α 1 ⊥ ⋯ ⊥ α p , 且 ∣ α 1 ∣ = ⋯ = ∣ α p ∣ = 1    ⟺    A H A = I p \begin{aligned} A=(\alpha_1,\cdots,\alpha_p)是半U阵&\iff \alpha_1\bot\cdots\bot\alpha_p,且\vert \alpha_1 \vert=\cdots=\vert \alpha_p \vert=1\\ &\iff A^HA=I_{p} \end{aligned} A=(α1,,αp)是半Uα1αp,α1==αp=1AHA=Ip

性质
  1. 保模长 A为半U阵,则 ∣ A x ∣ 2 = ∣ x ∣ 2 \vert Ax \vert^2=\vert x \vert^2 Ax2=x2

    ∣ A x ∣ 2 = ( A x ) H ( A x ) = x H A H A x = ∣ X ∣ 2 \vert Ax \vert^2=(Ax)^H(Ax)=x^HA^HAx=\vert X\vert^2 Ax2=(Ax)H(Ax)=xHAHAx=X2

  2. 保正交 A为半U阵, x ⊥ y x\bot y xy ,则 A x ⊥ A y Ax\bot Ay AxAy

预-U阵(预-单位正交阵)

α 1 , α 2 , ⋯   , α n 是 n 维列向量,且 α 1 ⊥ α 2 ⊥ ⋯ ⊥ α n , 则 A = ( α 1 , α 2 , ⋯   , α n ) 是预 U 阵 \begin{aligned} &\alpha_1,\alpha_2,\cdots,\alpha_n是n维列向量,且\alpha_1\bot\alpha_2\bot\cdots\bot\alpha_n ,\\ &则A=(\alpha_1,\alpha_2,\cdots,\alpha_n)是预U阵 \end{aligned} α1,α2,,αnn维列向量,且α1α2αn,A=(α1,α2,,αn)是预U

eg
X 1 = ( 1 i i ) , X 2 = ( 2 i 1 1 ) , X 3 = ( 0 1 − 1 ) ( X 1 , X 2 ) = 0 , ( X 2 , X 3 ) = 0 , ( X 1 , X 3 ) = 0 , ∴ X 1 ⊥ X 2 ⊥ X 3 , A = ( X 1 , X 2 , X 3 ) 是预 − U 阵 \begin{aligned} &X_1=\left( \begin{matrix} 1\\i\\i \end{matrix} \right),X_2=\left( \begin{matrix} 2i\\1\\1 \end{matrix} \right),X_3=\left( \begin{matrix} 0\\1\\-1 \end{matrix} \right)\\\\ &(X_1,X_2)=0,(X_2,X_3)=0,(X_1,X_3)=0,\\\\ &\therefore X_1\bot X_2\bot X_3,A=(X_1,X_2,X_3)是预-U阵 \end{aligned} X1= 1ii ,X2= 2i11 ,X3= 011 (X1,X2)=0,(X2,X3)=0,(X1,X3)=0,X1X2X3,A=(X1,X2,X3)是预U

判定

A = ( α 1 , α 2 , ⋯   , α n )    ⟺    A H A = ( ( α 1 , α 1 ) ⋯ 0 ⋮ ⋱ 0 0 ⋯ ( α n , α n ) ) 是对角阵 其中, α 1 , α 2 , ⋯   , α p 是 n 维列向量 \begin{aligned} A&=(\alpha_1,\alpha_2,\cdots,\alpha_n)\\ &\iff A^HA=\left( \begin{matrix} &(\alpha_1,\alpha_1)&\cdots&0\\ &\vdots&\ddots&0\\ &0&\cdots&(\alpha_n,\alpha_n) \end{matrix} \right)是对角阵\\ &其中,\alpha_1,\alpha_2,\cdots,\alpha_p是n维列向量 \end{aligned} A=(α1,α2,,αn)AHA= (α1,α1)000(αn,αn) 是对角阵其中,α1,α2,,αpn维列向量

【矩阵论】1.准备知识——复数域上的内积域正交阵_第3张图片

等价判定

  • A = A n × n A=A_{n\times n} A=An×n 为U阵( A H A = I A^HA=I AHA=I),即A的列向量 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 互正交,且长度为1
  • A − 1 = A H A^{-1}=A^H A1=AH
  • A H A = I , 且 A A H = I A^HA=I,且AA^H=I AHA=I,AAH=I

U阵(A正交阵)

A 是预 U 阵且 ∣ α 1 ∣ = ⋯ = ∣ α n ∣ = 1 , 则 A 是一个 U 阵 ( 正交阵 ) \begin{aligned} A是预U阵且 \vert \alpha_1 \vert=\cdots=\vert \alpha_n \vert=1,则A是一个U阵(正交阵) \end{aligned} A是预U阵且α1==αn=1,A是一个U(正交阵)

判定

A = ( α 1 , ⋯   , α n )    ⟺    A H A = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ) = I 是单位阵 \begin{aligned} A&=(\alpha_1,\cdots,\alpha_n)\\ &\iff A^HA=\left( \begin{matrix} &1&0&\cdots&0\\ &0&1&\cdots&0\\ &\vdots&\vdots&\ddots&\vdots\\ &0&0&\cdots&1 \end{matrix} \right)=I是单位阵 \end{aligned} A=(α1,,αn)AHA= 100010001 =I是单位阵

性质

1. A 是 U 阵    ⟺    A H A = I    ⟺    A − 1 A = I    ⟺    A A H = I    ⟺    A = ( α 1 , α 2 , ⋯   , α n ) ,且 α 1 ⊥ α 2 , ⋯ ⊥ α n , 且 ∣ α 1 ∣ = ⋯ = ∣ α n ∣ = 1 2. ∣ A x ∣ 2 = ∣ x ∣ 2 , A 是 U 阵 ∵ ∣ A x ∣ 2 = ( A x ) H ( A x ) = x H A H A x = x H I x = ( x , x ) = ∣ x ∣ 2 3. x ⊥ y ⇒ A x ⊥ A y , A 是 U 阵 ∵ ( A x , A y ) = ( A y ) H A x = y H A H A x = ( x , y ) = 0    ⟺    A x ⊥ A y 4. ( A x , A y ) = ( x , y ) , A 是 U 阵 \begin{aligned} &1. A是U阵\iff A^HA=I\iff A^{-1}A=I\iff AA^H=I\\ &\iff A=(\alpha_1,\alpha_2,\cdots,\alpha_n) ,且\alpha_1\bot\alpha_2,\cdots\bot\alpha_n,且\vert \alpha_1\vert=\cdots=\vert\alpha_n\vert=1\\\\ &2.\vert Ax\vert^2=\vert x \vert^2,A是U阵\\ &\because \vert Ax\vert^2 = (Ax)^H(Ax)=x^HA^HAx=x^HIx=(x,x)=\vert x \vert^2\\\\ &3.x\bot y \Rightarrow Ax\bot Ay,A是U阵\\ &\because (Ax,Ay)=(Ay)^HAx=y^HA^HAx=(x,y)=0\iff Ax\bot Ay\\\\ &4.(Ax,Ay)=(x,y),A是U阵 \end{aligned} 1.AUAHA=IA1A=IAAH=IA=(α1,α2,,αn),且α1α2,αn,α1==αn=12.∣Ax2=x2AUAx2=(Ax)H(Ax)=xHAHAx=xHIx=(x,x)=x23.xyAxAyAU(Ax,Ay)=(Ay)HAx=yHAHAx=(x,y)=0AxAy4.(Ax,Ay)=(x,y)AU

预U阵与U阵

A = ( α 1 , ⋯   , α n ) 是预 U 阵 ⇒ A = ( α 1 ∣ α 1 ∣ , α 2 ∣ α 2 ∣ , ⋯   , α n ∣ α n ∣ ) 是 U 阵 \begin{aligned} A=(\alpha_1,\cdots,\alpha_n) 是预U阵\Rightarrow A=(\frac{\alpha_1}{\vert \alpha_1\vert},\frac{\alpha_2}{\vert \alpha_2\vert},\cdots,\frac{\alpha_n}{\vert \alpha_n \vert})是U阵 \end{aligned} A=(α1,,αn)是预UA=(α1α1,α2α2,,αnαn)U

【矩阵论】1.准备知识——复数域上的内积域正交阵_第4张图片

U阵构造新U阵

若 A = ( α 1 , α 2 , ⋯   , α n ) 为 U 阵,则 1. k = ± 1 , k A = ( k α 1 , k α 2 , ⋯   , k α n ) 为 U 阵 2. B = ( β 1 , β 2 , ⋯   , β n ) 为 U 阵,其中 β 组为 α 组的重排 3. ( 封闭性 ) 若 A 、 B 为同阶 U 阵,则 A B 也为 U 阵 \begin{aligned} 若A&=(\alpha_1,\alpha_2,\cdots,\alpha_n) 为U阵,则\\ &1.k=\pm1,kA=(k\alpha_1,k\alpha_2,\cdots,k\alpha_n)为U阵\\ &2.B=(\beta_1,\beta_2,\cdots,\beta_n) 为U阵,其中\beta组为\alpha组的重排\\ &3.(封闭性)若A、B为同阶U阵,则AB也为U阵 \end{aligned} A=(α1,α2,,αn)U阵,则1.k=±1,kA=(kα1,kα2,,kαn)U2.B=(β1,β2,,βn)U阵,其中β组为α组的重排3.(封闭性)AB为同阶U阵,则AB也为U

向量构造U阵

若 α = ( a 1 a 2 ⋮ a n ) ∈ C , A = I n − 2 α α H ∣ α ∣ 2 是一个 U 阵 1. A H = A 且 A 2 = I ( A − 1 = A ) 2. A 为 U 阵 ( A H A = I ) 证明 : 1. A 2 = ( I n − 2 α α H ∣ α ∣ 2 ) ( I n − 2 α α H ∣ α ∣ 2 ) = I n 2 − 4 α α H ∣ α ∣ 2 + 4 ( α α H ) ( α α H ) ∣ α ∣ 4 = I n − 4 α α H ∣ α ∣ 2 + 4 α ( α H α ) α H ∣ α ∣ 4 = I n − 4 α α H ∣ α ∣ 2 + 4 α ( ∣ α ∣ 2 ) α H ∣ α ∣ 4 = I n − 4 α α H ∣ α ∣ 2 + 4 α α H ∣ α ∣ 2 = I n 2. A H A = ( I n − 2 α α H ∣ α ∣ 2 ) H ( I n − 2 α α H ∣ α ∣ 2 ) = ( I n − 2 α α H ∣ α ∣ 2 ) ( I n − 2 α α H ∣ α ∣ 2 ) = A 2 = I ∴ A 是 U 阵 \begin{aligned} 若\alpha&=\left( \begin{matrix} a_1\\a_2\\\vdots \\ a_n \end{matrix} \right)\in C,A=I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2}是一个U阵\\\\ &1.A^H=A且A^2=I(A^{-1}=A)\\ &2.A为U阵(A^HA=I)\\\\ 证明: 1.A^2&=(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})\\ &=I_n^2-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4(\alpha\alpha^H)(\alpha\alpha^H)}{\vert \alpha\vert^4}=I_n-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4\alpha(\alpha^H\alpha)\alpha^H}{\vert \alpha\vert^4} \\ &=I_n-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4\alpha(\vert \alpha\vert^2)\alpha^H}{\vert \alpha\vert^4}=I_n-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}=I_n\\ 2.A^HA&=(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})^H(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})\\ &=(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})=A^2=I\\ &\therefore A是U阵 \end{aligned} α证明:1.A22.AHA= a1a2an C,A=Inα22ααH是一个U1.AH=AA2=I(A1=A)2.AU(AHA=I)=(Inα22ααH)(Inα22ααH)=In2α24ααH+α44(ααH)(ααH)=Inα24ααH+α44α(αHα)αH=Inα24ααH+α44α(α2)αH=Inα24ααH+α24ααH=In=(Inα22ααH)H(Inα22ααH)=(Inα22ααH)(Inα22ααH)=A2=IAU

eg
α = ( 1 1 1 ) , 其 U 阵为 I 3 − 2 α α H ∣ α ∣ 2 = ( 1 0 0 0 1 0 0 0 1 ) − 2 3 ( 1 1 1 1 1 1 1 1 1 ) = ( 1 3 − 2 3 − 2 3 − 2 3 1 3 − 2 3 − 2 3 − 2 3 1 3 ) \begin{aligned} \alpha=\left( \begin{matrix} 1\\1\\1 \end{matrix} \right),其U阵为 I_3-\frac{2\alpha\alpha^H}{\vert \alpha\vert^2}&=\left( \begin{matrix} &1&0&0\\&0&1&0\\&0&0&1\\ \end{matrix} \right)-\frac{2}{3}\left( \begin{matrix} &1&1&1\\&1&1&1\\&1&1&1\\ \end{matrix} \right)\\ &=\left( \begin{matrix} &\frac{1}{3}&-\frac{2}{3}&-\frac{2}{3}\\ &-\frac{2}{3}&\frac{1}{3}&-\frac{2}{3}\\ &-\frac{2}{3}&-\frac{2}{3}&\frac{1}{3}\\ \end{matrix} \right) \end{aligned} α= 111 ,U阵为I3α22ααH= 100010001 32 111111111 = 313232323132323231

你可能感兴趣的:(数学,#,矩阵论,矩阵,算法,人工智能)