ResNet网络学习笔记。

ResNet网络学习

看b站 霹雳吧啦Wz 的视频总结的学习笔记!

视频的地址

大佬的Github代码

1、ResNet详解

ResNet 网络是在2015年由微软实验室提出,斩获当年 ImageNet 竞赛中分类任务第一名,目标检测第一名。获得 COCO 数据集中目标检测第一名,图像分割第一名。

论文:《Deep Residual Learning for Image Recognition》

网络中的亮点:

  • 超深的网络结构。(突破1000层)
  • 提出 Residual 模块。
  • 使用 Batch Normalization 加速训练。(丢弃dropout)

ResNet34 的网络结构图:

ResNet网络学习笔记。_第1张图片

1.1、解决的问题

当我们的网络模型堆叠到一定深度时,会出现两个问题:

  • 梯度消失或梯度爆炸。
  • 退化问题:越深的网络可能比浅层的网络效果差。

如下图所示,左边图中,20层的网络的误差比56层的误差小。因此,越深的网络可能比浅层的网络效果差

ResNet网络学习笔记。_第2张图片

对于梯度消失或梯度爆炸的问题,原文中提出通过数据的预处理以及在网络中使用 (BN)Batch Normalization 加速训练来解决。

对于退化问题,原文中提出使用 Residual 模块来解决。

如上图所示,右图中使用了 Residual 模块,实线为测试误差,虚线为训练误差,可以看出越深层的网络误差变小了。

1.2、residual 模块介绍

接下来看一下什么是 residual 模块。

下图中分别是34层的 ResNet 和50/101/152层的 ResNet 的 residual 结构。

右边1×1的卷积核起到降维和升维的作用,同时可以减少网络的参数。

ResNet网络学习笔记。_第3张图片

在 ResNet34 的网络结构图中我们看到,有的残差结构用的实线,有的用的虚线。

如下图所示,虚线的分支上通过1×1的卷积核进行了维度处理。

在相加操作中,需要保持维度相同。以 ResNet 18/34 为例,左边输入和输出的维度都为[56,56,64],因此可以直接进行相加操作。而右边输入的维度为[56,56,64],输出的维度为[28,28,128],因此分支上需要进行维度处理再进行相加操作。

ResNet 18/34:

ResNet网络学习笔记。_第4张图片

ResNet 50/101/152:

ResNet网络学习笔记。_第5张图片

下图为不同版本的 ResNet 网络结构,表中的残差结构给出了主分支上卷积核的大小与卷积核个数,表中 ×N 表示将该残差结构堆叠N次。

ResNet网络学习笔记。_第6张图片

对于 ResNet18/34 ,它的残差结构 conv3_x、conv4_x、conv5_x 所对应的第一层残差结构都是虚线残差结构。

对于 ResNet50/101/152 ,除了conv3_x、conv4_x、conv5_x 外,它的 conv2_x 所对应的第一层残差结构也是虚线残差结构。但是 conv2_x 只调整 channel 维度,高和宽的维度不变,而 conv3_x, conv4_x, conv5_x 的残差结构的分支上做维度处理时,不仅要调整 channel 的维度,还要将高和宽缩减为原来的一半。

1.3、Batch Normalization

ResNet网络学习笔记。_第7张图片

具体查看大佬的博客

1.4、迁移学习

在迁移学习中,我们希望利用源任务(Source Task)学到的知识帮助学习目标任务 (Target Task)。例如,一个训练好的图像分类网络能够被用于另一个图像相关的任务。再比如,一个网络在仿真环境学习的知识可以被迁移到真实环境的网络。迁移学习一个典型的例子就是载入训练好VGG网络,这个大规模分类网络能将图像分到1000个类别,然后把这个网络用于另一个任务,如医学图像分类。

ResNet网络学习笔记。_第8张图片

ResNet网络学习笔记。_第9张图片

常见的迁移学习方式:

  1. 载入权重后训练所有参数。
  2. 载入权重后只训练最后几层参数。
  3. 载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层。

2、使用pytorch实现ResNet

2.1、model

import torch.nn as nn
import torch


# 18或34层的残差结构。
class BasicBlock(nn.Module):
    expansion = 1  # 残差结构所使用卷积核个数的一个变化,1表示是之前的一倍,没有变化。

    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False) # BatchNorm2d不需要偏置。
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample   # downsample为是虚线还是实线的残差结构。

    def forward(self, x):
        identity = x   # 残差结构的分支
        if self.downsample is not None: # 是否是虚线的残差结构
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


# 50、101、152层的残差结构。
class Bottleneck(nn.Module):
    """
    注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
    但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
    这么做的好处是能够在top1上提升大概0.5%的准确率。
    可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
    """
    expansion = 4   # 卷积核个数变为原来的4倍

    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()

        width = int(out_channel * (width_per_group / 64.)) * groups

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)  # squeeze channels
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion, # 这里卷积核个数变为原来的4倍。
                               kernel_size=1, stride=1, bias=False)  # unsqueeze channels
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True) # inplace为True不影响结果,可以节省内存。
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


# 定义ResNet模型。
class ResNet(nn.Module):

    def __init__(self,
                 block, # 用的那种残差结构
                 blocks_num, # 每层的残差结构的个数
                 num_classes=1000, # 类别数目
                 include_top=True, # 表示在ResNet的基础上构建更复杂的模型,默认为true
                 groups=1,
                 width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64   # 输入的通道数为64

        self.groups = groups
        self.width_per_group = width_per_group

        # 第一种卷积层 conv1。
        # RGD图片输入的通道数为3,输出为64(卷积核的组数)。
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0]) # 对应conv2_x
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) # 对应conv3_x
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) # 对应conv4_x
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) # 对应conv5_x
        if self.include_top:
            # 自适应采样,不管输入尺寸是多少,输出为(1, 1)。
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes) # 全连接层

        # 初始化权重。
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    # 创建每种卷积层。
    # channel为主分支卷积核的个数,block_num为卷积层的层数。
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        # 分支是否是虚线。
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = [] # 新建一个列表,存放每一个卷积层。
        # 第一层的分支为虚线,先添加进去。
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion # 更新输入通道数

        # 遍历剩下的层,逐个添加到列表中。
        for _ in range(1, block_num): # 从1开始,因为第一层已经添加了,0表示第一层。
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))

        return nn.Sequential(*layers)

    def forward(self, x):
        # conv1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x) # conv2_x
        x = self.layer2(x) # conv3_x
        x = self.layer3(x) # conv4_x
        x = self.layer4(x) # conv5_x

        if self.include_top:
            x = self.avgpool(x) #池化
            x = torch.flatten(x, 1) # 展平处理
            x = self.fc(x) #全联接层

        return x


# 定义各种类型resnet模型。

def resnet34(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


def resnext50_32x4d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)


def resnext101_32x8d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
    groups = 32
    width_per_group = 8
    return ResNet(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

2.2、train

这里我们可以使用迁移学习的方式导入预训练好的模型参数。

我们输入import torchvision.models.resnet,然后点 resnet 进去查看源码中下载预训练的模型参数的地址:

model_urls = {
    "resnet18": "https://download.pytorch.org/models/resnet18-f37072fd.pth",
    "resnet34": "https://download.pytorch.org/models/resnet34-b627a593.pth",
    "resnet50": "https://download.pytorch.org/models/resnet50-0676ba61.pth",
    "resnet101": "https://download.pytorch.org/models/resnet101-63fe2227.pth",
    "resnet152": "https://download.pytorch.org/models/resnet152-394f9c45.pth",
    "resnext50_32x4d": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
    "resnext101_32x8d": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
    "wide_resnet50_2": "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
    "wide_resnet101_2": "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
}

下载完把文件放在我们的项目目录下,进行训练:

import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm

from model import resnet34

# 可以点进resnet去下载预训练的模型。
import torchvision.models.resnet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224), # 中心裁剪
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 16
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    # 初始化模型。
    net = resnet34()
    # 使用迁移学习的方式进行训练。
    # load pretrain weights
    # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
    model_weight_path = "./resnet34-pre.pth" # 预训练模型的权重
    assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu')) # 加载预训练模型
    # for param in net.parameters():
    #     param.requires_grad = False

    # change fc layer structure
    in_channel = net.fc.in_features # 全连接层输入的深度。
    net.fc = nn.Linear(in_channel, 5)
    net.to(device)

    # define loss function
    loss_function = nn.CrossEntropyLoss()

    # construct an optimizer
    params = [p for p in net.parameters() if p.requires_grad]
    optimizer = optim.Adam(params, lr=0.0001)

    epochs = 3
    best_acc = 0.0
    save_path = './resNet34.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()# 控制网络中BatchNorm2d的状态。
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval() # 控制网络中BatchNorm2d的状态。
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()

2.3、test

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import resnet34


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = resnet34(num_classes=5).to(device)

    # load model weights
    weights_path = "./resNet34.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))

    # prediction
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

你可能感兴趣的:(python深度学习,网络,学习,深度学习)