获取训练集和测试集,可直接在网上下载,如Kaggle上有许多数据集。数据集内每个数据包括标签和内容,此次用的是CIFAR10的数据集(包括飞机、火车等10个分类的图片)。
我们直接使用自带的torchvision.datasets.CIFAR10函数进行下载。
import torchvision
# root表示数据集存储路径,train表示是否是训练集,transform表示将图片转换成指定格式,download表
#示是否从网络中下载
#准备训练集、测试集
train = torchvision.datasets.CIFAR10(root = '../dataset2',train = True,transform=torchvision.transforms.ToTensor(),download=True)
test = torchvision.datasets.CIFAR10(root = '../dataset2',train = False,transform=torchvision.transforms.ToTensor(),download=True)
我们可以打印看下数据有多少
print("训练集长度为{}".format(len(train)))
print("测试集长度为{}".format(len(test)))
然后加载数据集,使用DataLoader
加载数据集,就是类似于将数据打包,例如将1000个数据,每100个打包成一个集合
from torch.utils.data import DataLoader
train_loader = DataLoader(train,batch_size=64)
test_loader = DataLoader(test,batch_size=64)
在加载好数据之后,我们就可以来搭建神经网络了。我们先来看一下CIFAR10网络的结构模型。
搭建模型,在torch中就是继承Model类,重写forward方法,写法很简单
import torch.nn as nn
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),#注意这一步在图中没有画出来
nn.Linear(64, 10)
)
def forward(self,x):
x = self.model(x)
return x
测试网络模型搭建是否正确
import torch
input = torch.ones((64,3,32,32))
mymodel = MyModule()
output = mymodel(input)
print(output.shape)
损失函数(此处使用交叉熵验证)以及其他参数设置,然后开始训练
mymodel = MyModule()
#损失函数
loss = nn.CrossEntropyLoss()
#优化器
learn_rate = 1e-2;
opt = torch.optim.SGD(mymodel.parameters(),lr=learn_rate)
#训练次数
test_step = 0
#测试次数
train_step = 0
#训练轮数
epoch = 10
for i in range(epoch):
print("========第{}论训练=========".format(i+1))
for data in train_loader:
imgs,targets = data
output = mymodel(imgs)
lossf = loss(output,targets)
#优化器调优
opt.zero_grad()#每一次梯度清零
loss.backward()#反向传播
opt.step()
train_step += 1
print("第{}次训练 Loss:{}".format(train_step,lossf.item()))
# 测试
total_accuacy = 0
with torch.no_grad():#总的准确数
for data in test_loader:
img,targets = data
output = mymodel(img)
accuracy = (output.argmax(1) == targets).sum()
test_step += 1
total_accuacy += accuracy
print("测试集上的准确率为{}".format(total_accuacy/len(test)))
#保存模型
torch.save(mymodel,"mine.pth")
import torchvision
# root表示数据集存储路径,train表示是否是训练集,transform表示将图片转换成指定格式,download表示是否从网络中下载
#准备训练集、测试集
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),#注意这一步在图中没有画出来
nn.Linear(64, 10)
)
def forward(self,x):
x = self.model(x)
return x
if __name__ == '__main__':
train = torchvision.datasets.CIFAR10(root='./dataset2', train=True, transform=torchvision.transforms.ToTensor(),
download=False)
test = torchvision.datasets.CIFAR10(root='./dataset2', train=True, transform=torchvision.transforms.ToTensor(),
download=False)
train_loader = DataLoader(train, batch_size=64)
test_loader = DataLoader(test, batch_size=64)
mymodel = MyModule()
#损失函数
loss = nn.CrossEntropyLoss()
#优化器
learn_rate = 1e-2;
opt = torch.optim.SGD(mymodel.parameters(),lr=learn_rate)
#训练次数
test_step = 0
#测试次数
train_step = 0
#训练轮数
epoch = 10
total_loss = 0
for i in range(epoch):
print("========第{}论训练=========".format(i+1))
for data in train_loader:
imgs,targets = data
output = mymodel(imgs)
lossf = loss(output,targets)
#优化器调优
opt.zero_grad()#每一次梯度清零
lossf.backward()#反向传播
opt.step()
train_step += 1
if(train_step% 100 == 0):
print("第{}次训练 Loss:{}".format(train_step,lossf.item()))
# 测试
total_accuacy = 0
with torch.no_grad():#总的准确数
for data in test_loader:
img,targets = data
output = mymodel(img)
accuracy = (output.argmax(1) == targets).sum()
test_step += 1
total_accuacy += accuracy
print("测试集上的准确率为{}".format(total_accuacy/len(test)))
#保存模型
torch.save(mymodel,"mine.pth")