1、意外的全局变量:由于使用未声明的变量,而意外的创建了一个全局变量,而使这个变量一直留在内存中无法被回收
2、被遗忘的计时器或回调函数:设置了 setInterval 定时器,而忘记取消它,如果循环函数有对外部变量的引用的话,那么这个变量会被一直留在内存中,而无法被回收。
3、脱离 DOM 的引用:获取一个 DOM 元素的引用,而后面这个元素被删除,由于一直保留了对这个元素的引用,所以它也无法被回收。
4、闭包:不合理的使用闭包,从而导致某些变量一直被留在内存当中。
属性值 | 作用 |
---|---|
none | 元素不显示,并且会从文档流中移除。 |
block | 块类型。默认宽度为父元素宽度,可设置宽高,换行显示。 |
inline | 行内元素类型。默认宽度为内容宽度,不可设置宽高,同行显示。 |
inline-block | 默认宽度为内容宽度,可以设置宽高,同行显示。 |
list-item | 像块类型元素一样显示,并添加样式列表标记。 |
table | 此元素会作为块级表格来显示。 |
inherit | 规定应该从父元素继承display属性的值。 |
React Router
路由的基础实现原理分为两种,如果是切换 Hash
的方式,那么依靠浏览器 Hash
变化即可;如果是切换网址中的 Path
,就要用到 HTML5 History API
中的 pushState
、replaceState
等。在使用这个方式时,还需要在服务端完成 historyApiFallback
配置React Router
内部主要依靠 history
库完成,这是由 React Router
自己封装的库,为了实现跨平台运行的特性,内部提供两套基础 history
,一套是直接使用浏览器的 History API
,用于支持 react-router-dom
;另一套是基于内存实现的版本,这是自己做的一个数组,用于支持 react-router-native
。React Router
的工作方式可以分为设计模式与关键模块两个部分。从设计模式的角度出发,在架构上通过 Monorepo
进行库的管理。Monorepo
具有团队间透明、迭代便利的优点。其次在整体的数据通信上使用了 Context API 完成上下文传递。第一类是 Context 容器
,比如 Router 与 MemoryRouter;第二类是消费者组件,用以匹配路由
,主要有 Route、Redirect、Switch 等;第三类是与平台关联的功能组件
,比如 Link、NavLink、DeepLinking
等。参考:前端进阶面试题详细解答
CSS3中的盒模型有以下两种:标准盒子模型、IE盒子模型 盒模型都是由四个部分组成的,分别是margin、border、padding和content。
标准盒模型和IE盒模型的区别在于设置width和height时,所对应的范围不同:
可以通过修改元素的box-sizing属性来改变元素的盒模型:
box-sizeing: content-box
表示标准盒模型(默认值)box-sizeing: border-box
表示IE盒模型(怪异盒模型)以 iPhone XS 为例,当写 CSS 代码时,针对于单位 px,其宽度为 414px & 896px,也就是说当赋予一个 DIV元素宽度为 414px,这个 DIV 就会填满手机的宽度;
而如果有一把尺子来实际测量这部手机的物理像素,实际为 1242*2688 物理像素;经过计算可知,1242/414=3,也就是说,在单边上,一个逻辑像素=3个物理像素,就说这个屏幕的像素密度为 3,也就是常说的 3 倍屏。
对于图片来说,为了保证其不失真,1 个图片像素至少要对应一个物理像素,假如原始图片是 500300 像素,那么在 3 倍屏上就要放一个 1500900 像素的图片才能保证 1 个物理像素至少对应一个图片像素,才能不失真。 当然,也可以针对所有屏幕,都只提供最高清图片。虽然低密度屏幕用不到那么多图片像素,而且会因为下载多余的像素造成带宽浪费和下载延迟,但从结果上说能保证图片在所有屏幕上都不会失真。
还可以使用 CSS 媒体查询来判断不同的像素密度,从而选择不同的图片:
my-image { background: (low.png); }
@media only screen and (min-device-pixel-ratio: 1.5) {
#my-image { background: (high.png); }
}
JavaScript共有八种数据类型,分别是 Undefined、Null、Boolean、Number、String、Object、Symbol、BigInt。
其中 Symbol 和 BigInt 是ES6 中新增的数据类型:
这些数据可以分为原始数据类型和引用数据类型:
两种类型的区别在于存储位置的不同:
堆和栈的概念存在于数据结构和操作系统内存中,在数据结构中:
在操作系统中,内存被分为栈区和堆区:
块级格式化上下文,是一个独立的渲染区域,让处于
BFC
内部的元素与外部的元素相互隔离,使内外元素的定位不会相互影响。
IE下为
Layout
,可通过zoom:1
触发
触发条件:
position: absolute/fixed
display: inline-block / table
float
元素ovevflow !== visible
规则:
BFC
的两个相邻 Box
垂直排列BFC
的两个相邻 Box
的 margin
会发生重叠BFC
中子元素的 margin box
的左边, 与包含块 (BFC) border box
的左边相接触 (子元素 absolute
除外)BFC
的区域不会与 float
的元素区域重叠BFC
的高度时,浮动子元素也参与计算应用:
margin
重叠div
都位于同一个 BFC
区域之中)this 是执行上下文中的一个属性,它指向最后一次调用这个方法的对象。在实际开发中,this 的指向可以通过四种调用模式来判断。
这四种方式,使用构造器调用模式的优先级最高,然后是 apply、call 和 bind 调用模式,然后是方法调用模式,然后是函数调用模式。
一个拥有 length 属性和若干索引属性的对象就可以被称为类数组对象,类数组对象和数组类似,但是不能调用数组的方法。常见的类数组对象有 arguments 和 DOM 方法的返回结果,还有一个函数也可以被看作是类数组对象,因为它含有 length 属性值,代表可接收的参数个数。
常见的类数组转换为数组的方法有这样几种:
(1)通过 call 调用数组的 slice 方法来实现转换
Array.prototype.slice.call(arrayLike);
(2)通过 call 调用数组的 splice 方法来实现转换
Array.prototype.splice.call(arrayLike, 0);
(3)通过 apply 调用数组的 concat 方法来实现转换
Array.prototype.concat.apply([], arrayLike);
(4)通过 Array.from 方法来实现转换
Array.from(arrayLike);
性能优化是前端开发中避不开的问题,
性能问题无外乎两方面原因:渲染速度慢、请求时间长
。性能优化虽然涉及很多复杂的原因和解决方案,但其实只要通过合理地使用标签,就可以在一定程度上提升渲染速度以及减少请求时间
1. script 标签:调整加载顺序提升渲染速度
渲染引擎在解析 HTML 时,若遇到 script 标签引用文件,则会暂停解析过程
,同时通知网络线程加载文件,文件加载后会切换至 JavaScript 引擎来执行对应代码
,代码执行完成之后切换至渲染引擎继续渲染页面
。页面渲染过程中包含了请求文件以及执行文件的时间
,但页面的首次渲染可能并不依赖这些文件,这些请求和执行文件的动作反而延长了用户看到页面的时间,从而降低了用户体验。为了减少这些时间损耗,可以借助 script 标签的 3 个属性来实现。
async 属性
。立即请求文件,但不阻塞渲染引擎,而是文件加载完毕后阻塞渲染引擎并立即执行文件内容
defer 属性
。立即请求文件,但不阻塞渲染引擎,等到解析完 HTML 之后再执行
文件内容绿色的线表示执行解析 HTML ,蓝色的线表示请求文件,红色的线表示执行文件
当渲染引擎解析 HTML 遇到 script 标签引入文件时,会立即进行一次渲染
。所以这也就是为什么构建工具会把编译好的引用 JavaScript 代码的 script 标签放入到 body 标签底部,因为当渲染引擎执行到 body 底部时会先将已解析的内容渲染出来,然后再去请求相应的 JavaScript 文件
2. link 标签:通过预处理提升渲染速度
在我们对大型单页应用进行性能优化时,也许会用到按需懒加载的方式,来加载对应的模块,但如果能合理利用 link
标签的 rel
属性值来进行预加载,就能进一步提升渲染速度。
dns-prefetch
。当 link
标签的 rel
属性值为“dns-prefetch”时,浏览器会对某个域名预先进行 DNS 解析并缓存
。这样,当浏览器在请求同域名资源的时候,能省去从域名查询 IP 的过程,从而减少时间损耗
。下图是淘宝网设置的 DNS 预解析 preconnect
。让浏览器在一个 HTTP 请求正式发给服务器前预先执行一些操作,这包括DNS 解析、TLS 协商、TCP 握手
,通过消除往返延迟来为用户节省时间prefetch/preload
。两个值都是让浏览器预先下载并缓存某个资源
,但不同的是,prefetch 可能会在浏览器忙时被忽略
,而 preload 则是一定会被预先下载
。prerender
。浏览器不仅会加载资源,还会解析执行页面,进行预渲染这几个属性值恰好反映了浏览器获取资源文件的过程,在这里我绘制了一个流程简图,方便你记忆。
3. 搜索优化
DOM
节点用 js
对象的形式进行展示,并提供 render
方法,将虚拟节点渲染成真实 DOM
diff
比较:对虚拟节点进行 js
层面的计算,并将不同的操作都记录到 patch
对象re-render
:解析 patch
对象,进行 re-render
补充1��VDOM 的必要性?
DOM
节点 node
实现的属性很多,而 vnode
仅仅实现一些必要的属性,相比起来,创建一个 vnode
的成本比较低。vnode
,相当于加了一个缓冲,让一次数据变动所带来的所有 node
变化,先在 vnode
中进行修改,然后 diff
之后对所有产生差异的节点集中一次对 DOM tree
进行修改,以减少浏览器的重绘及回流。补充2:vue 为什么采用 vdom?
引入
Virtual DOM
在性能方面的考量仅仅是一方面。
Virtual DOM
哪个的性能更好还真不是一个容易下定论的问题。Vue
之所以引入了 Virtual DOM
,更重要的原因是为了解耦 HTML
依赖,这带来两个非常重要的好处是:
- 不再依赖
HTML
解析器进行模版解析,可以进行更多的AOT
工作提高运行时效率:通过模版AOT
编译,Vue
的运行时体积可以进一步压缩,运行时效率可以进一步提升;- 可以渲染到
DOM
以外的平台,实现SSR
、同构渲染这些高级特性,Weex
等框架应用的就是这一特性。
综上,
Virtual DOM
在性能上的收益并不是最主要的,更重要的是它使得Vue
具备了现代框架应有的高级特性。
display、margin、border、padding、background、height、min-height、max-height、width、min-width、max-width、overflow、position、left、right、top、bottom、z-index、float、clear、table-layout、vertical-align
visibility
和cursor
。letter-spacing、word-spacing、white-space、line-height、color、font、font-family、font-size、font-style、font-variant、font-weight、text-decoration、text-transform、direction
。text-indent和text-align
。list-style、list-style-type、list-style-position、list-style-imag
e`。transition和animation的区别
Animation
和transition
大部分属性是相同的,他们都是随时间改变元素的属性值,他们的主要区别是transition
需要触发一个事件才能改变属性,而animation
不需要触发任何事件的情况下才会随时间改变属性值,并且transition
为2帧,从from .... to
,而animation
可以一帧一帧的
1. DNS域名解析
DNS的域名查找,在客户端和浏览器,本地DNS之间的查询方式是递归查询;在本地DNS服务器与根域及其子域之间的查询方式是迭代查询;
在客户端输入 URL 后,会有一个递归查找的过程,从浏览器缓存中查找->本地的hosts文件查找->找本地DNS解析器缓存查找->本地DNS服务器查找
,这个过程中任何一步找到了都会结束查找流程。
如果本地DNS服务器无法查询到,则根据本地DNS服务器设置的转发器进行查询。若未用转发模式,则迭代查找过程如下图:
结合起来的过程,可以用一个图表示:
在查找过程中,有以下优化点:
浏览器缓存,系统缓存,路由器缓存,IPS服务器缓存,根域名服务器缓存,顶级域名服务器缓存,主域名服务器缓存
。2. 建立TCP连接
首先,判断是不是https的,如果是,则HTTPS其实是HTTP + SSL / TLS 两部分组成,也就是在HTTP上又加了一层处理加密信息的模块。服务端和客户端的信息传输都会通过TLS进行加密,所以传输的数据都是加密后的数据
进行三次握手,建立TCP连接。
SSL握手过程
完成了之后,客户端和服务器端就可以开始传送数据
发送HTTP请求,服务器处理请求,返回响应结果
TCP连接建立后,浏览器就可以利用
HTTP/HTTPS
协议向服务器发送请求了。服务器接受到请求,就解析请求头,如果头部有缓存相关信息如if-none-match与if-modified-since
,则验证缓存是否有效,若有效则返回状态码为304
,若无效则重新返回资源,状态码为200
这里有发生的一个过程是HTTP缓存,是一个常考的考点,大致过程如图:
3. 关闭TCP连接
4. 浏览器渲染
按照渲染的时间顺序,流水线可分为如下几个子阶段:构建 DOM 树、样式计算、布局阶段、分层、栅格化和显示。如图:
styleSheets
,计算出 DOM
节点的样式。构建 DOM 树
样式计算
渲染引擎将 CSS 样式表转化为浏览器可以理解的 styleSheets,计算出 DOM 节点的样式。
CSS 样式来源主要有 3 种,分别是通过 link 引用的外部 CSS 文件、style标签内的 CSS、元素的 style 属性内嵌的 CSS。
页面布局
布局过程,即
排除 script、meta 等功能化、非视觉节点
,排除display: none
的节点,计算元素的位置信息,确定元素的位置,构建一棵只包含可见元素布局树。如图:
其中,这个过程需要注意的是回流和重绘
生成分层树
页面中有很多复杂的效果,如一些复杂的 3D 变换、页面滚动,或者使用 z-indexing 做 z 轴排序等,为了更加方便地实现这些效果,渲染引擎还需要为特定的节点生成专用的图层,并生成一棵对应的图层树(LayerTree)
栅格化
合成线程会按照视口附近的图块来优先生成位图,实际生成位图的操作是由栅格化来执行的。所谓栅格化,是指将图块转换为位图
通常一个页面可能很大,但是用户只能看到其中的一部分,我们把用户可以看到的这个部分叫做视口(viewport)。在有些情况下,有的图层可以很大,比如有的页面你使用滚动条要滚动好久才能滚动到底部,但是通过视口,用户只能看到页面的很小一部分,所以在这种情况下,要绘制出所有图层内容的话,就会产生太大的开销,而且也没有必要。
显示
最后,合成线程发送绘制图块命令给浏览器进程。浏览器进程根据指令生成页面,并显示到显示器上,渲染过程完成。
它是一种异步通信的方法,通过直接由 js 脚本向服务器发起 http 通信,然后根据服务器返回的数据,更新网页的相应部分,而不用刷新整个页面的一种方法。
面试手写(原生):
//1:创建Ajax对象
var xhr = window.XMLHttpRequest?new XMLHttpRequest():new ActiveXObject('Microsoft.XMLHTTP');// 兼容IE6及以下版本
//2:配置 Ajax请求地址
xhr.open('get','index.xml',true);
//3:发送请求
xhr.send(null); // 严谨写法
//4:监听请求,接受响应
xhr.onreadysatechange=function(){
if(xhr.readySate==4&&xhr.status==200 || xhr.status==304 )
console.log(xhr.responsetXML)
}
jQuery写法
$.ajax({
type:'post',
url:'',
async:ture,//async 异步 sync 同步
data:data,//针对post请求
dataType:'jsonp',
success:function (msg) {
},
error:function (error) {
}
})
promise 封装实现:
// promise 封装实现:
function getJSON(url) {
// 创建一个 promise 对象
let promise = new Promise(function(resolve, reject) {
let xhr = new XMLHttpRequest();
// 新建一个 http 请求
xhr.open("GET", url, true);
// 设置状态的监听函数
xhr.onreadystatechange = function() {
if (this.readyState !== 4) return;
// 当请求成功或失败时,改变 promise 的状态
if (this.status === 200) {
resolve(this.response);
} else {
reject(new Error(this.statusText));
}
};
// 设置错误监听函数
xhr.onerror = function() {
reject(new Error(this.statusText));
};
// 设置响应的数据类型
xhr.responseType = "json";
// 设置请求头信息
xhr.setRequestHeader("Accept", "application/json");
// 发送 http 请求
xhr.send(null);
});
return promise;
}
const保证的并不是变量的值不能改动,而是变量指向的那个内存地址不能改动。对于基本类型的数据(数值、字符串、布尔值),其值就保存在变量指向的那个内存地址,因此等同于常量。
但对于引用类型的数据(主要是对象和数组)来说,变量指向数据的内存地址,保存的只是一个指针,const只能保证这个指针是固定不变的,至于它指向的数据结构是不是可变的,就完全不能控制了。
(1)BMP,是无损的、既支持索引色也支持直接色的点阵图。这种图片格式几乎没有对数据进行压缩,所以BMP格式的图片通常是较大的文件。
(2)GIF是无损的、采用索引色的点阵图。采用LZW压缩算法进行编码。文件小,是GIF格式的优点,同时,GIF格式还具有支持动画以及透明的优点。但是GIF格式仅支持8bit的索引色,所以GIF格式适用于对色彩要求不高同时需要文件体积较小的场景。
(3)JPEG是有损的、采用直接色的点阵图。JPEG的图片的优点是采用了直接色,得益于更丰富的色彩,JPEG非常适合用来存储照片,与GIF相比,JPEG不适合用来存储企业Logo、线框类的图。因为有损压缩会导致图片模糊,而直接色的选用,又会导致图片文件较GIF更大。
(4)PNG-8是无损的、使用索引色的点阵图。PNG是一种比较新的图片格式,PNG-8是非常好的GIF格式替代者,在可能的情况下,应该尽可能的使用PNG-8而不是GIF,因为在相同的图片效果下,PNG-8具有更小的文件体积。除此之外,PNG-8还支持透明度的调节,而GIF并不支持。除非需要动画的支持,否则没有理由使用GIF而不是PNG-8。
(5)PNG-24是无损的、使用直接色的点阵图。PNG-24的优点在于它压缩了图片的数据,使得同样效果的图片,PNG-24格式的文件大小要比BMP小得多。当然,PNG24的图片还是要比JPEG、GIF、PNG-8大得多。
(6)SVG是无损的矢量图。SVG是矢量图意味着SVG图片由直线和曲线以及绘制它们的方法组成。当放大SVG图片时,看到的还是线和曲线,而不会出现像素点。SVG图片在放大时,不会失真,所以它适合用来绘制Logo、Icon等。
(7)WebP是谷歌开发的一种新图片格式,WebP是同时支持有损和无损压缩的、使用直接色的点阵图。从名字就可以看出来它是为Web而生的,什么叫为Web而生呢?就是说相同质量的图片,WebP具有更小的文件体积。现在网站上充满了大量的图片,如果能够降低每一个图片的文件大小,那么将大大减少浏览器和服务器之间的数据传输量,进而降低访问延迟,提升访问体验。目前只有Chrome浏览器和Opera浏览器支持WebP格式,兼容性不太好。