人脸识别是一种软件层面的算法,用于通过处理视频帧或数字图像来验证或识别一个人的身份,其中该人的脸是可见的。
面部识别技术有几种不同的工作方法,但是他们通常会将图像中的面部特征与数据库中的面部特征进行比较。特定的神经网络被训练用来检测人脸的标签,并将人脸与图像中的其他物体区分开来。
标签是人类普遍的五官等面部特征,比如:眼睛、鼻子、嘴巴、眉毛等。任何人脸检测和识别系统或软件都绕不开人脸识别算法。人脸识别,字面上意思是基于人的脸部信息进行身份识别的一生物识别技术。
人脸识别时首先判断是否存在人脸,若存在,则进一步给出人脸的大小、位置以及脸部的各个器官的信息,依据这些信息,进一步提取出人的特征、身份,并与已存在的人脸,进行匹配与识别。
人脸识别与人脸验证人脸验证任务,在于用孪生网络提取一对人脸的特征表达,并计算两个特征表达之间的相似度,如果相似度一致则为相同身份,否则不一样。
一般人脸验证的特征表达前,我们需要用固定身份类别数目进行训练,常见有arcface,cosface等方法,具体公式原理不细说。将不同身份人脸映射到一个球面域。这样就可以学习到很丰富的特征。
之后,我们便可以利用前面提取特征的网络,对每一对人脸进行特征提取并计算特征的相似性,判断人脸是否一致,这样就不需要怕特征限制,但是我们需要取一个模板,这种也叫zero-shotlearning。
随着工业界对准确率的更高要求,想要进一步提升模型的泛化能力,需要将不同算法组合来解决面部识别过程中的许多常规问题:比如面部表情、姿势、光照条件、图像噪声等因素对识别过程带来的差异。
最新的实验将LBP算法与先进的图像处理技术相结合:双边滤波、直方图均衡化、对比度调整和图像混合,通过结合后的算法取得了长足的进步。
谷歌人工智能写作项目:神经网络伪原创
上次的人脸识别仿真,我们用的是PCA和SVM方法进行人脸识别,该方法仍属于机器学习领域,未涉及神经网络的知识好文案。这次使用的方法是基于PCA和BP神经网络对人脸识别。
其中,PCA的功能和上次一致,是用来对20张图片进行降维处理,最终产生8个主成分作为BP神经网络的输入;神经网络的输出层采用4个神经元,用来区分两个不同的人脸;本例的BP神经网络采用8-10-4的三层结构,输入层神经元数量选取8个,隐含层神经元数量选取10个,输出层神经元数量选取4个。
本质上是模式识别,把现实的东西抽象成计算机能够理解的数字。如果一个图片是256色的,那么图像的每一个像素点,都是0到255中间的一个值,这样你可以把一个图像转换成一个矩阵。如何去识别这个矩阵中的模式?
用一个相对来讲很小的矩阵在这个大的矩阵中从左到右,从上到下扫一遍,每一个小矩阵区块内,你可以统计0到255每种颜色出现的次数,以此来表达这一个区块的特征。
这样通过这一次“扫描”,你得到了另一个由很多小矩阵区块特征组成的矩阵。这一个矩阵比原始的矩阵要小吧?那就对了!
然后对这个小一点的矩阵,再进行一次上面的步骤,进行一次特征“浓缩”,用另一个意思来讲,就是把它抽象化。最后经过很多次的抽象化,你会将原始的矩阵变成一个1维乘1维的矩阵,这就是一个数字。
而不同的图片,比如一个猫,或者一个狗,一个熊,它们最后得到的这个数字会不同。
于是你把一个猫,一个狗,一个熊都抽象成了一个数字,比如0.34,0.75,0.23,这就达到让计算机来直接辨别的目的了。
人脸,表情,年龄,这些原理都是类似的,只是初始的样本数量会很大,最终都是通过矩阵将具体的图像抽象成了数字,因为计算机只认识数字。但是抽象的函数,会有所不同,达到的效果也会不同。
。
基于几何特征的人脸识别方法基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。
基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。
但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。
模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。
基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。
基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。
因此,这也是j种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且该方法在复杂背景下,多姿态的人脸图像中也能得到有效的检测结果。
但是这种方法通常需要遍历整个图片才能得到检测结果,并且在训练过程中需要大量的人脸与非人脸样本,以及较长的训练时间。近几年来,针对该方法的人脸检测研究相对比较活跃。
基于代数特征的人脸识别方法在基于代数特征的人脸识别中,每一幅人脸图像被看成是以像素点灰度为元素的矩阵,用反映某些性质的数据特征来表示人脸的特征。
设人脸图像),(yxI为二维NM×灰度图像,同样可以看成是NMn×=维列向量,可视为NM×维空间中的一个点。
但这样的一个空间中,并不是空间中的每一部分都包含有价值的信息,故一般情况下,需要通过某种变换,将如此巨大的空间中的这些点映射到一个维数较低的空间中去。
然后利用对图像投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。在基于代数特征的人脸识别方法中,主成分分析法(PCA)和Fisher线性判别分析(LDA)是研究最多的方法。
本章简要介绍介绍了PCA。
完整的PCA(PrincipalComponentAnalysis)人脸识别的应用包括四个步骤:人脸图像预处理;读入人脸库,训练形成特征子空间;把训练图像和测试图像投影的上一步骤中得到的子空间上;选择一定的距离函数进行识别。
详细描述如下:4.1读入人脸库一归一化人脸库后,将库中的每个人选择一定数量的图像构成训练集,设归一化后的图像是n×n,按列相连就构成n2维矢量,可视为n2维空间中的一个点,可以通过K-L变换用一个低维子空间描述这个图像。
4.2计算K.L变换的生成矩阵训练样本集的总体散布矩阵为产生矩阵,即或者写成:式中xi为第i个训练样本的图像向量,|l为训练样本的均值向量,M为训练样本的总数。
为了求n2×n2维矩阵∑的特征值和正交归一化的特征向量,要直接计算的话,计算量太大,由此引入奇异值分解定理来解决维数过高的问题。
4.3利用奇异值分解(AVD)定理计算图像的特征值和特征向量设A是一个秩为r的行n×r维矩阵,则存在两个正交矩阵和对角阵:其中凡则这两个正交矩阵和对角矩阵满足下式:其中为矩阵的非零特征值,4.4把训练图像和测试图像投影到特征空间每一副人脸图像向特征脸子空间投影,得到一组坐标系数,就对应于子空间中的一个点。
同样,子空间中的任一点也对应于~副图像。这组系数便可作为人脸识别的依据,也就是这张人脸图像的特征脸特征。
也就是说任何一幅人脸图像都可以表示为这组特征脸的线性组合,各个加权系数就是K.L变换的展开系数,可以作为图像的识别特征,表明了该图像在子空间的位置,也就是向量可用于人脸检测,如果它大于某个阈值,可以认为f是人脸图像,否则就认为不是。
这样原来的人脸图象识别问题就转化为依据子空间的训练样本点进行分类的问题。基于连接机制的人脸识别方法基于连接机制的识别方法的代表性有神经网络和弹性匹配法。
神经网络(ANN)在人工智能领域近年来是一个研究热门,基于神经网络技术来进行人脸特征提取和特征识别是一个积极的研究方向。
神经网络通过大量简单神经元互联来构成复杂系统,在人脸识别中取得了较好的效果,特别是正面人脸图像。常用的神经网络有:BP网络、卷积网络、径向基函数网络、自组织网络以及模糊神经网络等n¨。
BP网络的运算量较小耗时也短,它的自适应功能使系统的鲁棒性增强。神经网络用于人脸识别,相比较其他方法,其可以获得识别规则的隐性表达,缺点是训练时间长、运算量大、收敛速度慢且容易陷入局部极小点等。
Gutta等人结合RBF与树型分类器的混合分类器模型来进行人脸识别乜螂1。
Lin等人采用虚拟样本进行强化和反强化学习,采用模块化的网络结构网络的学习加快,实现了基于概率决策的神经网络方法获得了较理想结果,。此种方法能较好的应用于人脸检测和识别的各步骤中。
弹性匹配法采用属性拓扑图代表人脸,拓扑图的每个顶点包含一个特征向量,以此来记录人脸在该顶点位置周围的特征信息¨引。
拓扑图的顶点是采用小波变换特征,对光线、角度和尺寸都具有一定的适应性,且能适应表情和视角的变化,其在理论上改进了特征脸算法的一些缺点。
基于三维数据的人脸识别方法一个完整的人脸识别系统包括人脸面部数据的获取、数据分析处理和最终结果输出三个部分。
图2-1显示了三维人脸识别的基本步骤:1、通过三维数据采集设备获得人脸面部的三维形状信息;2、对获取的三维数据进行平滑去噪和提取面部区域等预处理;3、从三维数据中提取人脸面部特征,通过与人脸库中的数据进行比对;4、用分类器做分类判别,输出最后决策结果。
基于三维数据的方法的代表性是基于模型合成的方法和基于曲率的方法。基于模型合成的方法,它的基本思想为:输入人脸图像的二维的,用某种技术恢复(或部分恢复)人脸的三维信息,再重新合成指定条件下的人脸图像。
典型代表是3D可变形模型和基于形状恢复的3D增强人脸识别算法。
3D可变形模型首先通过200个高精度的3D人脸模型构建一个可变形的3D人脸模型,用这个模型来对给定的人脸图像拟合,获得一组特定的参数,再合成任何姿态和光照的人脸图像n卜捌。
基于形状恢复的3D增强人脸识别算法是利用通用的3D人脸模型合成新的人脸图像,合成过程改变了一定的姿态与光源情况。
曲率是最基本的表达曲面信息的局部特征,因而最早用来处理3D人脸识别问题的是人脸曲面的曲率。Lee禾lJ用平均曲率和高斯曲率值,将人脸深度图中凸的区域分割出来。
如果你是开发者的话,可以去Tel一下colorreco,更好地技术解答。
因为疫情影响,所有人需要佩戴上口罩,人脸识别受到影响,经过提升了人脸识别的技术,带上口罩后也能一样被识别出来。1突如其来的新冠肺炎疫情严重扰乱了我们的生活节奏。
佩戴口罩会遮挡大量的面部区域,导致原有的“人脸识别系统”突然间失效了。在公共区域摘下口罩完成人脸识别,不但会耗费大量不必要的时间,还会增加被感染的风险。
2疫情为当下的人脸识别系统提出了全新的要求和挑战:在佩戴口罩场景下如何高效地完成人脸识别。
为了解决上述的挑战,现有的人脸识别系统需要从人脸检测、人脸对齐以及人脸识别模块优化等几个主要的方面进行针对性的优化和提升。
1.人脸检测模块优化人脸检测是人脸识别系统最重要的组成部分之一,一旦人脸检测失败或检测结果出现较大偏差,都会严重影响后续人脸识别的效果。
人脸检测算法在佩戴口罩场景下检测结果误差较大,主要是因为缺少相关的训练数据。
2.人脸对齐模块优化人脸对齐又被称为人脸关键点定位,该算法通过在人脸图片上标定出一些具有特殊语意信息的点,然后通过这些点对人脸进行仿射变换。
当面部大部分区域被口罩覆盖时,人脸关键点定位算法的精度会急剧降低,进而影响人脸识别系统的精度。3.人脸识别模块优化被口罩覆盖的面部区域包含大量用于人脸识别的特征信息。
目前解决这一问题的主要方法是通过修改深度神经网络结构同时加入更多注意力机制,使模型可以更多地关注到未被口罩遮挡的眼部区域,同时结合脸型等面部结构特征来提升人脸识别系统在“口罩人脸识别”这一特殊场景下的精度。
3无接触式测温、无人车送货、AI辅助诊疗等技术在抗击疫情斗争中的大量使用,也让我们看到了人工智能技术所蕴含的巨大潜力。就目前而言,人脸识别受到疫情的影响变得作用很小,摘下来被感染的几率过大。
经过优化和提升了人脸识别系统,让戴口罩也能识别了。
再夜场上班每天签到人脸识别不会入公安系统。单位人脸识别只是单位内部员工考勤识别,和公安局不联网。人脸识别是本单位内部管理系统,与公安机关治安管理系统无关。
公安机关只和城市各重点单位及临街铺面的监控系统联网。人脸识别的方法几何特征的人脸识别方法,几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系。这些算法识别速度快,需要的内存小,但识别率较低。
基于特征脸的人脸识别方法,特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。
高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。
神经网络的人脸识别方法,神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。
人脸识别是一种基于人的脸部特征信息进行身份认证的生物特征识别技术。它集成了人工智能、机器识别、机器学习、模型理论、视频图像处理等多种专业技术。
人脸识别主要分四步完成:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取、匹配与识别。楼上已经很详细的说明了人脸识别的技术原理,这里不做过多赘述。
在人脸识别业界,拥有人脸识别技术核心实力,即是拥有自主知识产权的人脸识别SDK。
人脸识别技术,可以看LFW榜和FDDB榜:face++99.5%,商汤Deepid399.53%,腾讯Tencent99.65%,百度Baidu99.77%,颜鉴(ColorReco)99.64%,都是一线了,赶超国外的google。
之所以只列举这几家公司,是因为它们相比于其他公司,优势在于有自己的核心技术,而不是渠道商或传统厂商。
值得一提的是,这些公司目前规模都不大,但却像谷歌、微软一样都有自己的人工智能研究院,紧密追随国际最新的科研成果。
像前段时间很火的阿尔法狗,其工作原理是深度学习,这一技术其实在中国的这些公司里都已经拥有并投入商用了。