Pytorch房价预测

数值稳定性和激活函数总结

  1. relu容易导致梯度爆炸、sigmoid容易导致梯度消失
  2. xavier模型初始化方法
  3. Adam适应学习的范围更大一点

房价预测demo

下载数据

import hashlib
import os
import tarfile
import zipfile
import requests
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
  • 断言 assert 等价于
    if not expression:
        raise AssertionError
def download(name, cache_dir=os.path.join('.', 'data')):  
    """下载一个DATA_HUB中的文件,返回本地文件名。"""
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}."
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname
def download_extract(name, folder=None):  
    """下载并解压zip/tar文件。"""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, '只有zip/tar文件可以被解压缩。'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir
def download_all():  
    """下载DATA_HUB中的所有文件。"""
    for name in DATA_HUB:
        download(name)
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
DATA_HUB['kaggle_house_train'] = (  
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')
 
DATA_HUB['kaggle_house_test'] = (  
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))

print(train_data.shape)
print(test_data.shape)
(1460, 81)
(1459, 80)
# 前四个和最后两个特征,以及相应标签
print(train_data.iloc[0:4,[0,1,2,3,-3,-2,-1]])
   Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70       RL         60.0       WD       Abnorml     140000

特征工程

  • 需要注意,这里用的是所有数据集的均值和方差处理数据,实际中不一定能够拿到测试集
# 在每个样本中,第一个特征是ID,我们将其从数据集中删除,同时删除训练集中的标签
all_features = pd.concat((train_data.iloc[:,1:-1],test_data.iloc[:,1:]))
all_features.head()
MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities LotConfig ... ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition
0 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub Inside ... 0 0 NaN NaN NaN 0 2 2008 WD Normal
1 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub FR2 ... 0 0 NaN NaN NaN 0 5 2007 WD Normal
2 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub Inside ... 0 0 NaN NaN NaN 0 9 2008 WD Normal
3 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub Corner ... 0 0 NaN NaN NaN 0 2 2006 WD Abnorml
4 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub FR2 ... 0 0 NaN NaN NaN 0 12 2008 WD Normal

5 rows × 79 columns

all_features.info()

Int64Index: 2919 entries, 0 to 1458
Data columns (total 79 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   MSSubClass     2919 non-null   int64  
 1   MSZoning       2915 non-null   object 
 2   LotFrontage    2433 non-null   float64
 3   LotArea        2919 non-null   int64  
 4   Street         2919 non-null   object 
 5   Alley          198 non-null    object 
 6   LotShape       2919 non-null   object 
 7   LandContour    2919 non-null   object 
 8   Utilities      2917 non-null   object 
 9   LotConfig      2919 non-null   object 
 10  LandSlope      2919 non-null   object 
 11  Neighborhood   2919 non-null   object 
 12  Condition1     2919 non-null   object 
 13  Condition2     2919 non-null   object 
 14  BldgType       2919 non-null   object 
 15  HouseStyle     2919 non-null   object 
 16  OverallQual    2919 non-null   int64  
 17  OverallCond    2919 non-null   int64  
 18  YearBuilt      2919 non-null   int64  
 19  YearRemodAdd   2919 non-null   int64  
 20  RoofStyle      2919 non-null   object 
 21  RoofMatl       2919 non-null   object 
 22  Exterior1st    2918 non-null   object 
 23  Exterior2nd    2918 non-null   object 
 24  MasVnrType     2895 non-null   object 
 25  MasVnrArea     2896 non-null   float64
 26  ExterQual      2919 non-null   object 
 27  ExterCond      2919 non-null   object 
 28  Foundation     2919 non-null   object 
 29  BsmtQual       2838 non-null   object 
 30  BsmtCond       2837 non-null   object 
 31  BsmtExposure   2837 non-null   object 
 32  BsmtFinType1   2840 non-null   object 
 33  BsmtFinSF1     2918 non-null   float64
 34  BsmtFinType2   2839 non-null   object 
 35  BsmtFinSF2     2918 non-null   float64
 36  BsmtUnfSF      2918 non-null   float64
 37  TotalBsmtSF    2918 non-null   float64
 38  Heating        2919 non-null   object 
 39  HeatingQC      2919 non-null   object 
 40  CentralAir     2919 non-null   object 
 41  Electrical     2918 non-null   object 
 42  1stFlrSF       2919 non-null   int64  
 43  2ndFlrSF       2919 non-null   int64  
 44  LowQualFinSF   2919 non-null   int64  
 45  GrLivArea      2919 non-null   int64  
 46  BsmtFullBath   2917 non-null   float64
 47  BsmtHalfBath   2917 non-null   float64
 48  FullBath       2919 non-null   int64  
 49  HalfBath       2919 non-null   int64  
 50  BedroomAbvGr   2919 non-null   int64  
 51  KitchenAbvGr   2919 non-null   int64  
 52  KitchenQual    2918 non-null   object 
 53  TotRmsAbvGrd   2919 non-null   int64  
 54  Functional     2917 non-null   object 
 55  Fireplaces     2919 non-null   int64  
 56  FireplaceQu    1499 non-null   object 
 57  GarageType     2762 non-null   object 
 58  GarageYrBlt    2760 non-null   float64
 59  GarageFinish   2760 non-null   object 
 60  GarageCars     2918 non-null   float64
 61  GarageArea     2918 non-null   float64
 62  GarageQual     2760 non-null   object 
 63  GarageCond     2760 non-null   object 
 64  PavedDrive     2919 non-null   object 
 65  WoodDeckSF     2919 non-null   int64  
 66  OpenPorchSF    2919 non-null   int64  
 67  EnclosedPorch  2919 non-null   int64  
 68  3SsnPorch      2919 non-null   int64  
 69  ScreenPorch    2919 non-null   int64  
 70  PoolArea       2919 non-null   int64  
 71  PoolQC         10 non-null     object 
 72  Fence          571 non-null    object 
 73  MiscFeature    105 non-null    object 
 74  MiscVal        2919 non-null   int64  
 75  MoSold         2919 non-null   int64  
 76  YrSold         2919 non-null   int64  
 77  SaleType       2918 non-null   object 
 78  SaleCondition  2919 non-null   object 
dtypes: float64(11), int64(25), object(43)
memory usage: 1.8+ MB
# 存在缺失值的列的数目
all_features.isnull().any(axis=0).sum()
34
# 存在缺失值的行的数目
all_features.isnull().any(axis=1).sum()
2919
# 将所有缺失的值替换为相应特征的平均值。 通过将特征重新缩放到零均值和单位方差来标准化数据
numeric_features = all_features.dtypes[all_features.dtypes != "object"].index # 在pandas中object就是字符串类型
all_features[numeric_features] = all_features[numeric_features].apply(\
    lambda x: (x- x.mean() / x.std())) # 对每一列进行操作
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 再看一下存在缺失值的列的数目
all_features.isnull().any(axis=0).sum()
23

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RvstCcp5-1668172706049)(attachment:faedb1f0-d795-4196-861c-164478db64e4.png)]

# 处理字符串,one-hot编码
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
(2919, 331)
# 再看一下存在缺失值的列的数目
all_features.isnull().any(axis=0).sum()
0

转为张量

# 从pandas格式中提取Numpy格式,并将其转为张量
# 切记将其转换为float32,因为tensor常用的是float32
n_train = train_data.shape[0] # 行数
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
train_features.shape
torch.Size([1460, 331])
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1,1), dtype=torch.float32)
# 不将训练标签转换成矩阵的话训练过程中会有警告 

模型及训练

模型

loss = nn.MSELoss()
in_features = train_features.shape[1]

def get_net(): # 简单的线性回归
    net = nn.Sequential(nn.Linear(in_features=in_features,out_features=1))
    return net

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aslA2oL1-1668172706050)(attachment:9ebb6e60-ef9c-433d-bc4e-0ae619824975.png)]

def log_rmse(net, features, labels):
    clipped_preds = torch.clamp(net(features), 1, float('inf'))
    rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
    return rmse.item()

训练函数

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = d2l.load_array((train_features, train_labels), batch_size)
    optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate,
                                 weight_decay=weight_decay)
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()
            l = loss(net(X), y)
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

k折交叉验证

注意:我们这里的验证集是从训练集中分出来的

slice(1,4) # 切片函数 跟python序列数据类型的切片一毛一样
slice(1, 4, None)
def get_k_fold_data(k,i,X,y):
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat([X_train, X_part], 0) # 行拼接
            y_train = torch.cat([y_train, y_part], 0)
    return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'fold {i + 1}, train log rmse {float(train_ls[-1]):f}, '
              f'valid log rmse {float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k

模型选择

调整超参数和模型架构

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 0.03, 0.01, 64 
# lr这么大的原因是选择了Adam优化器,他能接受的学习率范围更大
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')
fold 1, train log rmse 0.258938, valid log rmse 0.234451
fold 2, train log rmse 0.250196, valid log rmse 0.281742
fold 3, train log rmse 0.255146, valid log rmse 0.254656
fold 4, train log rmse 0.255734, valid log rmse 0.259894
fold 5, train log rmse 0.252717, valid log rmse 0.259565
5-折验证: 平均训练log rmse: 0.254546, 平均验证log rmse: 0.258062

Pytorch房价预测_第1张图片

提交kaggle预测num_epochs

def train_and_prde(train_features, test_features, train_labels, test_data,
                   num_epochs, lr,weight_decay, batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs,
                        lr,weight_decay,batch_size)
    
    d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
             ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
    print(f'train log rmse {float(train_ls[-1]):f}') # 保留六位小数
    
    preds = net(test_features).detach().numpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1,-1)[0])
    # print(test_data['SalePrice'])
    
    submission = pd.concat([test_data['Id'], test_data['SalePrice']],axis=1)
    submission.to_csv('submission.csv', index=False)
    
train_and_prde(train_features, test_features, train_labels, test_data,
                   num_epochs, lr,weight_decay, batch_size)
train log rmse 0.245931

Pytorch房价预测_第2张图片

你可能感兴趣的:(#,20天拿下Pytorch,pytorch,深度学习)