ElasticSearch入门:ES分词器与自定义分词器

ES入门:ES分词器与自定义分词器

  • 分词器的简单介绍
  • 不同分词器的效果对比
  • 自定义分词器的应用

分词器的简单介绍

分词器是es中的一个组件,通俗意义上理解,就是将一段文本按照一定的逻辑,分析成多个词语,同时对这些词语进行常规化的一种工具;ES会将text格式的字段按照分词器进行分词,并编排成倒排索引,正是因为如此,es的查询才如此之快;

es本身就内置有多种分词器,他们的特性与作用梳理如下:

分词器 作用
Standard ES默认分词器,按单词分类并进行小写处理
Simple 按照非字母切分,然后去除非字母并进行小写处理
Stop 按照停用词过滤并进行小写处理,停用词包括the、a、is
Whitespace 按照空格切分
Language 据说提供了30多种常见语言的分词器
Patter 按照正则表达式进行分词,默认是\W+ ,代表非字母
Keyword 不进行分词,作为一个整体输出

   这些分词器用于处理单词和字母,那功能基本已经覆盖,可以说是相当全面了!但对于中文而言,不同汉字组合成词语,往往多个字符组合在一起表达一种意思,显然,上述分词器无法满足需求;对应于中文,目前也有许多对应分词器,例如:IK,jieba,THULAC等,使用最多的即是IK分词器。
   除了中文文字以外,我们也经常会使用拼音,例如各类输入法,百度的搜索框等都支持拼音的联想搜索,那么假如将数据存入到es中,如何通过拼音搜索我们想要的数据呢,这个时候对应的拼音分词器可以有效帮助到我们,它的开发者也正是ik分词器的创始人。

不同分词器的效果对比

各种分词器的功能介绍令人眼花缭乱,那么,在业务的应用与开发中,我们该如何选择合适的分词器来满足我们的业务需求呢?具体可以根据分词器的分词效果酌情选择;接下来就具体看看各个分词器的分词效果吧~

以 “text” : “白兔万岁A*” 为例:

  • standard分词器 —— ES默认分词器,对于中文会按每个字分开处理,会忽略特殊字符
{
    "tokens": [
        {
            "token": "白",
            "start_offset": 0,
            "end_offset": 1,
            "type": "",
            "position": 0
        },
        {
            "token": "兔",
            "start_offset": 1,
            "end_offset": 2,
            "type": "",
            "position": 1
        },
        {
            "token": "万",
            "start_offset": 2,
            "end_offset": 3,
            "type": "",
            "position": 2
        },
        {
            "token": "岁",
            "start_offset": 3,
            "end_offset": 4,
            "type": "",
            "position": 3
        },
        {
            "token": "a",
            "start_offset": 4,
            "end_offset": 5,
            "type": "",
            "position": 4
        }
    ]
}
  • ik 分词器 —— 适用于根据词语查询整个内容信息,同样忽略其他特殊字符以及英文字符
{
    "tokens": [
        {
            "token": "白兔",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "万岁",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 1
        },
        {
            "token": "万",
            "start_offset": 2,
            "end_offset": 3,
            "type": "TYPE_CNUM",
            "position": 2
        },
        {
            "token": "岁",
            "start_offset": 3,
            "end_offset": 4,
            "type": "COUNT",
            "position": 3
        }
    ]
}
  • pinyin 分词器 —— 适用于通过拼音查询到对应字段信息,同时忽略特殊字符
{
    "tokens": [
        {
            "token": "bai",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 0
        },
        {
            "token": "btwsa",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 0
        },
        {
            "token": "tu",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 1
        },
        {
            "token": "wan",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 2
        },
        {
            "token": "sui",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 3
        },
        {
            "token": "a",
            "start_offset": 0,
            "end_offset": 0,
            "type": "word",
            "position": 4
        }
    ]
}

自定义分词器的应用

不同分词器的分词效果各有不同,那么,假如我们需要完成一个模糊查询的搜索功能,以多种形式查询es中的同一个字段,例如类似于百度搜索框那样,既想通过简单词语或者单个字去搜索,又想根据拼音去搜索,很明显,单一种类的分词器是非常难以满足业务需求的;
此时,可以考虑构建索引字段中不同的field去适配多个分词器,例如:我们可以将字段设置多个分词器:

mapping:
{
    "properties":{
        "name":{
            "type":"text",
            "analyzer":"ik_max_word"
        },
        "fields":{
            "PY":{
                "type":"text",
                "analyzer":"pinyin"
            }
        }
    }
}

如果想要更加自由地使用es的分词功能,也许还能打开另一扇通往成功的大门 —— 自定义分词器自定义分词器,顾名思义,就是通过不同分词器的组合以及相关属性设置,去创建符合自己心意的分词器,例如,如果我们既想通过词语联想一句话,又想享受拼音自动拼写转成词语的便捷,那么何不定义一个专属的分词器呢?例如:定义一个ik与拼音结合的分词器:

{
    "analysis":{
        "analyzer":{
            "my_max_analyzer":{
                "tokenizer":"ik_max_word",
                "filter":"py"
            },
            "my_smart_analyzer":{
                "tokenizer":"",
                "filter":"py"
            }
        },
        "filter":{
            "py":{
                "type":"pinyin",
                "first_letter":"prefix",
                "keep_separate_first_letter":true,
                "keep_full_pinyin":true,
                "keep_joined_full_pinyin":true,
                "keep_original":true,
                "limit_first_letter_length":16,
                "lowercase":true,
                "remove_duplicated_term":true
            }
        }
    }
}

此时,对应 “白兔万岁A*" 分词效果如下:

{
    "tokens": [
        {
            "token": "b",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "bai",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "白兔",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "baitu",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "bt",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "t",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 1
        },
        {
            "token": "tu",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 1
        },
        {
            "token": "w",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 2
        },
        {
            "token": "wan",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 2
        },
        {
            "token": "s",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 3
        },
        {
            "token": "sui",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 3
        },
        {
            "token": "万岁",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 3
        },
        {
            "token": "wansui",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 3
        },
        {
            "token": "ws",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 3
        },
        {
            "token": "w",
            "start_offset": 2,
            "end_offset": 3,
            "type": "TYPE_CNUM",
            "position": 4
        },
        {
            "token": "wan",
            "start_offset": 2,
            "end_offset": 3,
            "type": "TYPE_CNUM",
            "position": 4
        },
        {
            "token": "万",
            "start_offset": 2,
            "end_offset": 3,
            "type": "TYPE_CNUM",
            "position": 4
        },
        {
            "token": "s",
            "start_offset": 3,
            "end_offset": 4,
            "type": "COUNT",
            "position": 5
        },
        {
            "token": "sui",
            "start_offset": 3,
            "end_offset": 4,
            "type": "COUNT",
            "position": 5
        },
        {
            "token": "岁",
            "start_offset": 3,
            "end_offset": 4,
            "type": "COUNT",
            "position": 5
        }
    ]
}

你可能感兴趣的:(elasticsearch,搜索引擎,大数据)