【实用工具系列之爬虫】python爬取资讯数据

系列

1.【实用工具系列之爬虫】python实现爬取代理IP(防 ‘反爬虫’)
2.【实用工具系列之爬虫】python爬取资讯数据


前言

在大数据架构中,数据收集与数据存储占据了极为重要的地位,可以说是大数据的核心基础。而爬虫技术在这两大核心技术层次中占有了很大的比例。

本文实现一种简单快速的爬虫方法,其中用了代理ip,代理ip的获取可以参考我的这篇文章 【实用工具系列之爬虫】python实现爬取代理IP(防 ‘反爬虫’)。

szZack的文章


代理IP

代理IP网站:xicidaili

具体方法详见 【实用工具系列之爬虫】python实现爬取代理IP(防 ‘反爬虫’) 。
输出的代理ip数据保存到 ‘proxy_ip.pkl’


爬取数据代码

本文以爬取小量财经数据为例子。

  • 网站

    • 地址:http://xxx

    • 爬取内容
      url,title,click_number,html_content

    • 保存数据为csv,格式如下:
      url,title,click_number,html_content,crawl_time
      szZack的文章

  • 实战

    • 步骤:
      1、爬取首页,提取url作为第一层
      2、爬取第一层的url,作为第二层
      3、爬取第二层的url,作为第三层
      4、结束
  • 环境

    • pandas
    • python3
    • Ubuntu16.04
    • requests

  • 代码
    crawl_finance_news.py
  • 1、导入依赖包
import crawl_proxy_ip
import pandas as pd
import re, time, sys, os, random
import telnetlib
import requests

  • 2.全局变量
global url_set
url_set = {}
  • 3.爬取核心代码
def crawl_finance_news(start_url):
    
    #提取数据格式:url,title,click_number,html_content,crawl_time
    
    proxy_ip_list = crawl_proxy_ip.load_proxy_ip('proxy_ip.pkl')
    
    #爬取首页
    start_html = crawl_web_data(start_url, proxy_ip_list)
    #open('tmp.txt', 'w').write(start_html)
    global url_set
    url_set[start_url] = 0
    
    #提取第一层web
    web_content_list = extract_web_content(start_html, proxy_ip_list)
    
    #提取第二层web
    length = len(web_content_list)
    for i in range(length):
        if len(web_content_list[i][2]) == 0:
            html = crawl_web_data(web_content_list[i][0], proxy_ip_list)
            web_content_list += extract_web_content(html, proxy_ip_list)
            if len(web_content_list) > 1000:#仅仅是测试
                break
    
    #提取第3层web
    length = len(web_content_list)
    for i in range(length):
        if len(web_content_list[i][2]) == 0:
            html = crawl_web_data(web_content_list[i][0], proxy_ip_list)
            web_content_list += extract_web_content(html, proxy_ip_list)
            if len(web_content_list) > 1000:#仅仅是测试
                break
            
    #保存数据
    columns = ['url', 'title', 'click_number', 'html_content', 'crawl_time']
    df = pd.DataFrame(columns = columns, data = web_content_list)
    df.to_csv('finance_data.csv', encoding='utf-8')
    print('data_len:', len(web_content_list))
    
    
def crawl_web_data(url, proxy_ip_list):

    proxy_ip_dict = random.choice(proxy_ip_list)
    if len(proxy_ip_list) == 0:
        return ''
    proxy_ip_dict = proxy_ip_list[0]
    
    try:
        html = download_by_proxy(url, proxy_ip_dict)
        print(url, 'ok')
            
    except Exception as e:
        #print('50 e', e)
        #删除无效的ip
        index = proxy_ip_list.index(proxy_ip_dict)
        proxy_ip_list.pop(index)
        print('proxy_ip_list', len(proxy_ip_list))
       	
        return crawl_web_data(url, proxy_ip_list)
        
    return html
    

def download_by_proxy(url, proxies):
    headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.103 Safari/537.36', 'Connection':'close'}
    response = requests.get(url=url, proxies=proxies, headers=headers, timeout=10)
    response.encoding = 'utf-8'
    html = response.text
    return html
    

def extract_web_content(html, proxy_ip_list):

    #提取数据格式:url,title,click_number,html_content, crawl_time
    
    web_content_list = []
    
    html_content = html
    html = html.replace(' target ="_blank"', '')
    html = html.replace(' ', '')
    html = html.replace('\r', '')
    html = html.replace('\n', '')
    html = html.replace('\t', '')
    html = html.replace('"target="_blank', '')
    
    #

证监会:拟对证券违法行为提高刑期上限

res = re.search('href="(http[^"><]*finance[^"><]*)">([^<]*)<', html)#finance 必须是金融资讯 while res is not None: url, title = res.groups() #print('url, title', url, title) global url_set if url in url_set:#防止重复 html = html.replace('href="%s">%s<' %(url, title), '') res = re.search('href="(http[^"><]*finance[^"><]*)">([^<]*)<', html) continue else: url_set[url] = 0 click_number = get_click_number(url, proxy_ip_list) #print('click_number', click_number) now_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) if len(click_number) == 0:#仅保留正文 html_content = '' web_content_list.append([url, title, click_number, html_content, now_time]) if len(web_content_list) > 200:#test 每页最多爬取200条 break html = html.replace('href="%s">%s<' %(url, title), '') res = re.search('href="(http[^"><]*finance[^"><]*)">([^<]*)<', html) return web_content_list [szZack的文章](https://blog.csdn.net/zengNLP?type=blog) def get_click_number(url, proxy_ip_list): html = crawl_web_data(url, proxy_ip_list) #4297 res = re.search('(\d{1,})', html) if res is not None: return res.groups()[0] return ''
  • 4.测试
if __name__ == '__main__':
    
    #xx网:xxx/
    #用法:python crawl_finance_news.py 'xxx/'
    if len(sys.argv) == 2:
        crawl_finance_news(sys.argv[1])
        
  • 5.代码说明
    1、先爬取代理ip:python crawl_proxy_ip.py
    2、爬取财经新闻:python crawl_finance_news.py ‘xxx/’
    3、这里仅仅是测试,爬取1000条就结束
    4、数据保存到:finance_data.csv
    szZack的文章

  • 6.爬取内容示意
    【实用工具系列之爬虫】python爬取资讯数据_第1张图片

szZack的文章

你可能感兴趣的:(实用工具,爬虫,爬虫,数据分析)