- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- Towards Multimodal Large-Language Models for Parent-Child Interaction: A Focus on Joint Attention
UnknownBody
LLMDailyMultimodal语言模型人工智能大数据
摘要共同注意是儿童早期语言发展的关键组成部分,也是亲子互动有效性的重要指标。然而,目前对共同注意的检测和分析研究仍然有限,尤其是在多模态大语言模型(MLLMs)方面。本研究通过分析由两位语言病理学家标注的26段亲子互动视频,评估了多模态大语言模型理解共同注意的能力。这些标注识别出了共同注意程度高和低的片段,作为评估模型解释能力的基准。我们的研究结果显示,由于当前的多模态大语言模型对儿童发起的眼神交
- 前端实现版本更新自动检测✅
水煮白菜王
前端VueJavaScript前端vue.jsjavascript
作者简介:水煮白菜王,一位资深前端劝退师文章专栏:前端专栏,记录一下平时在博客写作中,总结出的一些开发技巧和知识归纳总结✍。感谢支持目录一、背景二、实现原理2.1逻辑2.2一些好处三、具体实现3.1工程化封装3.2关键方法解析脚本哈希获取:对比逻辑:四、全部代码4.1vue34.2vue2五、注意事项与常见问题5.1可能出现的问题5.2浏览器兼容方案一、背景在现代Web应用中,部署前端版本更新后及
- AI大模型零基础金融人如何一周自学大模型,从零基础到入门,看这篇就够了!
冻感糕人~
人工智能金融AI大模型LLM大模型技术大模型学习路线大模型基础
前几天参加了字节跳动在上海举办的火山引擎Force原动力大会,OpenAI也连续开了12天发布会,最近堪称科技界的春晚了。如果说2022年ChatGPT横空出世把人工智能的发展带上了一个新的台阶,那么2024年末,大模型对工作、生活的全面“侵入”让我们越来越接近库兹韦尔所描述的那个奇点时刻。作为金融民工,我们想通过这篇文章讲讲从用户的角度如何一周快速掌握大模型,以及为什么我建议每一个金融从业人员(
- Linux tcpdump -any抓的包转换成标准的pcap
812503533
linuxtcpdump网络协议tcp/ip
在Linux中使用tcpdump-any抓包并转换为标准pcap文件时出现额外字段,通常与链路层协议头部的差异以及pcap文件格式的兼容性有关。以下是详细原因和解决方案:一、问题原因分析-any选项的局限性tcpdump-any会自动猜测链路层协议类型(如Ethernet、IEEE802.11、PPP等),但可能因环境复杂导致误判。例如:在混合网络(如同时包含有线和无线流量)中,自动检测可能失败。
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- Spring MVC 拦截器
跪在镜子前喊帅
javajava
前言SpringMVC提供了一个拦截器的机制,它专门用于拦截controller层的路由请求。它的本质是:AOP面向切面的编程,也就是说符合横切关注点的功能都可以考虑使用拦截器实现。比如一些应用场景:权限检查例如:用户登录检查,访问项目的内部接口时,可以通过拦截器检测用户是否登录,如果登录,直接放回用户登录页面。日志记录更新推荐用原生的AOP机制会更好一点,粒度会更细,控制起来也更方便,如果你是针
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- 如何通过深度学习优化操作系统中的故障诊断与恢复机制
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3深度学习人工智能
如何通过深度学习优化操作系统中的故障诊断与恢复机制(副标题:智能监控、自适应诊断与自动恢复——操作系统故障自愈的新方向)摘要随着现代操作系统在多核、高并发和分布式环境中的广泛应用,系统故障及其恢复问题日益成为影响系统稳定性和业务连续性的关键挑战。传统的故障诊断方法依赖于预设规则和人工干预,难以应对复杂多变的故障场景。本文提出了一种基于深度学习的故障诊断与恢复机制,通过对大量历史日志、监控数据和故障
- CentOS U盘挂载指南
centos服务器运维
在CentOS中挂载U盘的步骤如下:1.检测U盘设备#查看新接入的存储设备sudofdisk-l#或lsblk输出示例:sdb或/dev/sdb1即为U盘设备2.创建挂载点sudomkdir/mnt/usb3.挂载U盘#FAT32/NTFS格式:sudomount-tvfat/dev/sdb1/mnt/usb-orw,uid=1000,gid=1000#替换为你的设备名#ext4格式:sudomo
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何使用ArkTS构建一个高性能的图像处理应用,涵盖从基础图像操作到高级滤镜应用的完整开发流程。我们将通过一个实际的案例——实现一个实时图像滤镜应用,来展示ArkTS在HarmonyNext平台上的强大能力。环境准备在开始之前,确保你的开发环
- HarmonyNext实战案例:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,ArkTS作为新一代的编程语言,为开发者提供了强大的工具来构建高性能、跨平台的应用。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的图像处理应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的特性,结合ArkTS的强大功能,实现复杂的图
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- scala针对复杂数据源导入与分隔符乱码处理
Tometor
scalajavascript后端java数据结构
复杂的数据源,和奇怪的数据格式是生产中经常遇到的难题,本文将探讨如何解析分隔符混乱的数据,和如何导入各种数据源文件一、非标准分隔符处理当数据源的分隔符混乱或不统一时(如,、|、\t混合使用),可采用以下方法:1.1动态检测分隔符//示例:自动检测前100行的常用分隔符valsampleLines=spark.read.text("data.csv").limit(100).collect()val
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- Python通过YOLO格式TXT标签文件在图像中画框
CHERISH_KDX
pythonYOLO人工智能
使用场景检测数据集标注是否有误:在目标检测算法中需要标注自己的数据集,为了更加方便的检查数据集标注是否有误,可以使用该工具将标注结果绘制在图像中并查看。美化识别结果中的检测框:在一些目标检测场景中,YOLO检测算法原始的检测框绘制会导致重叠、颜色冲突、字体过大等问题。可以使用该工具进行修改。代码importosimportcv2classcheck_label:def__init__(self,c
- Python学习指南:系统化路径 + 避坑建议
程之编
Python全栈通关秘籍青少年编程python开发语言人工智能机器学习
新手小白学习编程就像搭积木——需要从基础开始,逐步构建知识体系。以下是为你量身定制的Python学习路径,帮你告别杂乱,高效入门!一、学习前的关键认知明确目标:想用Python做什么?数据分析(如Excel自动化、可视化)Web开发(如搭建网站)人工智能(如机器学习)自动化办公(如处理文件、邮件)目标不同,后续学习侧重点不同(但基础通用)。避免误区:❌只看教程不写代码✅边学边动手,哪怕抄代码也要运
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 新的一年,新的感受和成长
是小天才哦
#高职生闲谈服务器
本人现在是工作快2年的打工人,我是前年7月份毕业的大专生。其实我在大学刚开始的时候因为体验过社会的毒打,所以发誓一定要好好学习,而我也的确好好学习了,在学校2年时间里,大部分时间都是在图书馆里面看书,主要为啥天天在图书馆很大原因是本专业的课程自己不是非常喜欢(我是人工智能专业,人工智能专业大专学历出来基本也是打框的无聊活)所以我就自己学习了系统运维方向,这个过程也考取了RHCE认证,也是因为这个认
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- TCP 是用来解决什么问题?
晚夜微雨问海棠呀
tcp/ip网络php
数据包丢失:在网络传输过程中,数据包可能会因为各种原因(如网络拥塞、设备故障等)而丢失。TCP通过序列号和确认应答机制来检测数据包是否丢失,并重新发送丢失的数据包。数据包乱序:数据包在传输过程中可能会因为不同的路径而到达接收端时顺序错乱。TCP通过序列号对数据包进行排序,确保数据按正确的顺序交付给应用层。数据包重复:在网络中,数据包可能会被多次传输,导致接收端收到重复的数据包。TCP通过序列号和确
- 【大模型开发】深入解析 DeepSpeed:原理、核心技术与示例代码
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习大模型开发大模型微调deepseekdeepspeedpython人工智能pytorch
深入解析DeepSpeed:原理、核心技术与示例代码DeepSpeed是由微软开源的高性能深度学习训练优化引擎,专注于帮助研究人员和工程团队在分布式环境中高效地训练超大规模模型。其核心目标是提供高吞吐、低内存占用、低成本的分布式训练方案,让数千亿甚至万亿级参数模型的训练成为可能。本文将从DeepSpeed的核心原理、关键组件、代码示例及实现过程详解等方面做详细阐述,帮助读者更好地理解并使用Deep
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 通义万相2.1:AI视频生成迎来“质变”,运镜、文字、物理规律全面突破
that's boy
人工智能通义万象2.1chatgptopenaiqwenAI作画AI编程
AI视频生成,从“能看”到“惊艳”的跨越在人工智能的浪潮中,AI视频生成无疑是最受瞩目的领域之一。从最初的简单动画到如今的逼真模拟,AI视频生成技术正在快速发展,不断刷新人们的认知。近日,阿里云旗下通义万相视频生成模型宣布了2.1版本的重磅升级,不仅在性能上实现了全面提升,更在运镜、文字生成、物理规律模拟等方面取得了突破性进展,让AI视频生成真正进入了“质变”的新阶段。通义万相2.1的出现,不仅是
- C++开源库大全
大王算法
C/C++开发实战365C++入门及项目实战宝典c++开源
程序员要站在巨人的肩膀上,C++拥有丰富的开源库,这里包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。标准库C++StandardLibrary:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/