- 通过TensorFlow实现简单深度学习模型(2)
yyc_audio
人工智能深度学习python机器学习
前文我们已经实现了对每批数据的训练,下面继续实现一轮完整的训练。完整的训练循环一轮训练就是对训练数据的每个批量都重复上述训练步骤,而完整的训练循环就是重复多轮训练。deffit(model,images,labels,epochs,batch_size=128):forepoch_counterinrange(epochs):print(f"Epoch{epoch_counter}")batch_
- 解释SQL和NoSQL数据库的区别,各自的适用场景是什么?
破碎的天堂鸟
学习教程nosql数据库
SQL与NoSQL数据库的深度对比及适用场景分析一、核心定义与数据模型差异1:SQL数据库结构化数据模型:基于关系型模型,数据以表格(行和列)形式存储,表之间通过外键建立关联。例如,客户表与订单表通过客户ID关联,形成严格的逻辑结构。预定义模式(Schema):需提前定义表结构(字段类型、主键、外键等),修改结构需通过ALTER等命令,灵活性较低。标准化查询语言:使用SQL(StructuredQ
- 阿里巴巴DIN模型原理与Python实现
eso1983
python开发语言算法推荐算法
阿里巴巴的DeepInterestNetwork(DIN)是一种用于点击率预测(CTR)的深度学习模型,特别针对电商场景中用户兴趣多样化和动态变化的特性设计。其核心思想是通过注意力机制动态捕捉用户历史行为中与当前候选商品相关的兴趣。1.DIN模型原理1.核心问题传统推荐模型(如Embedding+MLP)将用户历史行为视为固定长度的向量,忽略了用户兴趣的多样性。例如,用户历史行为中可能包含多个互不
- 树莓百度百科新动态:宜宾项目的深远影响与意义
树莓集团
百度人工智能媒体大数据科技
在树莓集团的百度百科词条中,宜宾项目的新动态备受关注,其深远影响与意义不容忽视。从产业发展角度来看,宜宾项目带动了当地数字产业的集聚。树莓集团在宜宾建设的多个数字产业园区,吸引了众多上下游企业入驻。形成了从芯片研发、软件开发到系统集成的完整产业链条。这种产业集聚效应不仅提高了产业的协同效率,还降低了企业的运营成本。例如,园区内的一家芯片制造企业与软件企业紧密合作,实现了芯片与软件的深度适配,提升了
- 探索React的深度应用:React Survey——构建问卷神器
傅尉艺Maggie
探索React的深度应用:ReactSurvey——构建问卷神器去发现同类优质开源项目:https://gitcode.com/在浩瀚的前端开发世界里,React与Redux已成为构建复杂Web应用的得力助手,但它们的强大往往隐藏在基础教程之后。今天,让我们一同探索【ReactSurvey】,一个将React与Redux之力发挥至极致的开源项目,教你如何轻松打造专业的在线问卷系统。项目介绍Reac
- React vs Vue3深度对比与使用场景分析
匹马夕阳
VUE技术集锦react.js前端前端框架
在前端开发领域,React和Vue3是两个备受瞩目的框架。它们都提供了强大的功能和灵活的开发方式,但各自的设计理念、使用方式和适用场景有所不同。本文将深入探讨React和Vue3的区别,通过代码示例和具体的使用场景,帮助开发者更好地理解并选择适合自己的框架。一、核心概念与设计理念1.ReactReact是由Facebook开发的一个JavaScript库,主要用于构建用户界面。它的核心理念是组件化
- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- 深度解析:大模型开源的真与假
rs勿忘初心
#AI大模型大模型开源闭源对比开源闭源区别
目录大模型企业开闭源策略各异开源大模型的定义与现状开源内容的局限性通常开放的内容实际未开放的关键内容法律与商业模式的约束开源许可证的重要性大模型的定制许可证及其限制性条款商业公司对开源大模型的策略和目的建立生态系统吸引开发者提升品牌形象保持竞争优势技术创新和改进技术与协助开发的挑战训练和推理过程的资源需求差异微调和衍生模型的技术实现及其局限性开源大模型在协作开发中的局限总结大模型的发展开启了AIG
- [特殊字符] Java 函数式接口深度解析:让你轻松掌握 Lambda 表达式与函数式编程!
扣丁梦想家
Javajava开发语言
引言:在Java8版本中,引入了函数式接口以及Lambda表达式,彻底改变了Java的编程模式,使得编程变得更加简洁、灵活、易读。特别是函数式接口,它是函数式编程的核心,使得Java代码能够像处理数据流一样高效且可读性强。本文将带你深入了解函数式接口的概念、使用方式以及如何充分利用它来优化代码。无论你是刚接触Java8的新手,还是已经掌握一些基础知识的开发者,阅读完本文后,你将能够更加自如地使用函
- Spring Boot 动态配置数据源全解析
♢.*
springboot后端java
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!引言在企业级应用开发中,单一数据源往往
- 深入解析:如何编写 Mapper 文件
♢.*
oracle数据库mybatis
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!在软件开发尤其是涉及数据库交互的项目中
- HDMI规范-第十六章 HDR(高动态范围)技术规范详解及运用场景
好多渔鱼好多
HDMI人工智能计算机视觉音视频电视视频编解码智能电视
引言随着显示技术的不断发展,用户对图像质量和视觉体验的要求越来越高。传统的SDR(StandardDynamicRange,标准动态范围)技术已经无法满足现代显示设备的需求。为此,HDR(HighDynamicRange,高动态范围)技术应运而生。HDR通过提供更广泛的亮度范围和更丰富的色彩深度,显著提升了图像的质量和视觉效果。本文将全面介绍HDR技术的规范,包括其工作原理、数据传输流程、标准和格
- 100种算法【Python版】第38篇—— Tarjan算法
AnFany
算法python开发语言Tarjan算法群体分析
本文目录1算法说明2算法示例:社交群体分析3算法示例:交通路网中的强连通分量识别4算法应用1算法说明Tarjan算法由计算机科学家RobertTarjan于1972年提出,目的是在有向图中有效地找到强连通分量(StronglyConnectedComponents,SCC)。强连通分量是指图中一个最大子图,其中任意两个节点之间都有路径相互可达。Tarjan算法是基于深度优先搜索(DFS)的一种高效
- Python实现强连通分量算法——Tarjan算法
NoABug
算法深度优先python
Python实现强连通分量算法——Tarjan算法Tarjan算法是一种基于深度优先搜索(DFS)的强连通分量(SCC)查找算法,由RobertTarjan在1972年提出。它采用了栈(Stack)数据结构来记录已发现但未处理完的节点,并通过对每个节点进行DFS遍历来寻找强连通分量。以下是Python实现的Tarjan算法的完整源码:#-*-coding:utf-8-*-deftarjan(gra
- Spring Boot 中 @Transactional 注解全面解析
♢.*
springboot数据库sql
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!引言在企业级应用开发中,数据的一致性和
- vue监听中的watch监听(详解)
皓月当空hy
vuevue.js
1、watch选项用于监听数据的变化并执行相应的回调函数。watch选项提供了两个重要的属性:deep和immediate。1.1、深度监听(deep:true)当你需要监听一个对象或数组内部的变化时,可以使用deep:true。这会使得watch监听器递归地监听对象或数组内部的所有嵌套属性的变化。//示例:watch:{ myObject:{ handler(newVal,oldVal){
- vue3中测试:单元测试、组件测试、端到端测试
皓月当空hy
vue.js
1、单元测试:单元测试通常适用于独立的业务逻辑、组件、类、模块或函数,不涉及UI渲染、网络请求或其他环境问题。describe('increment',()=>{//测试用例})toBe():用于严格相等比较(===),适用于原始类型或检查引用类型是否指向同一个对象。toEqual():用于深度比较,检查两个对象或数组的内容是否相等(即使它们不是同一个对象)。例如:test('increments
- 现代前端框架渲染机制深度解析:虚拟DOM到编译时优化
桂月二二
前端框架
引言:前端框架的性能进化论TikTokWeb将React18迁移至Vue3后,点击响应延迟降低42%,内存占用减少35%。Shopify采用Svelte重构核心交互模块,首帧渲染速度提升580%。Discord在Next.js14中启用ReactServerComponents后,服务端数据吞吐量增加240%,客户端Bundle体积减少54%。一、主流框架技术架构差异1.1三大范式运行机制对比维度
- DeepSeek 持续火爆;微信蓝包首秀;世界级人工智能科学家许主洪加盟阿里巴巴...|网易数智日报
网易数智
网易数智日报人工智能大数据业界资讯ai云计算
DeepSeek持续火爆,多个云平台上线相关模型「抢食」算力需求AI公司DeepSeek旗下大模型DeepSeek-R1「爆火」后,多个云平台宣布上线DeepSeek旗下模型。2月5日,阅文集团宣布,旗下作家辅助创作应用“作家助手”已集成幻方量化旗下AI公司深度求索(DeepSeek)的DeepSeek-R1大模型。这是DeepSeek首次应用于网文领域,旨在为作家提供更智能的创作支持。2月4日,
- 快速实现APP的即时通讯功能,提高聊天体验
网易数智
IM即时通讯WebRTC大数据游戏语音识别人工智能通信实时音视频
IM即时通讯技术的发展即时通讯(IM)是依托互联网实现信息即时交互的一项业务。实时聊天交互功能是当前主流APP的关键功能之一,像微信、QQ的聊天系统就是典型代表。IM虽看似简单,但其技术开发难度颇高,要满足海量并发、超低延时、消息必达等高实时性需求,需融合众多技术。近年来,移动互联网的深度渗透及社交+的迅猛发展,促使IM拓展出诸多新应用,其应用场景不再局限于社交聊天,还广泛出现在电商、直播、客服等
- DeepSeek对通达信编写的股票指标深度理解
风口猪炒股指标
抢财猫股票课堂DeepSeek人工智能通达信编程
今天试着把自己的一个“1(3)X模式”的通达信炒股指标喂给DeepSeek看它是否能理解这个指标模式的意图。市值约束:=FINANCE(40)/100000000>20ANDFINANCE(40)/1000000000;去高价股:=NOT(C>80);去除:=IF(CODELIKE('688'),0,1)ANDIF(CODELIKE('300'),0,1)ANDIF(CODELIKE('689')
- Azure AI Search Retriever 深度指南
bBADAS
azure人工智能flaskpython
技术背景介绍AzureAISearch(前称AzureCognitiveSearch)是微软提供的云端搜索服务,为开发者提供了强大的基础设施、API和工具,以扩展性地进行向量、关键词和混合查询的信息检索。AzureAISearchRetriever是一个集成模块,能够从非结构化查询中返回文档。它基于BaseRetriever类,并针对AzureAISearch的2023-11-01稳定RESTAP
- A100高效架构深度解析
智能计算研究中心
其他
内容概要NVIDIAA100GPU作为面向人工智能与高性能计算的关键硬件载体,其架构创新标志着计算范式的重要演进。本文通过系统性拆解A100的核心技术模块,重点探讨其在计算密度、互联效率与资源利用率三个维度的突破性设计。在计算架构层面,第三代TensorCore通过引入细粒度结构化稀疏支持与新型数据格式,显著提升矩阵运算效率;多实例GPU(MIG)技术则通过物理级硬件隔离实现单卡多任务并行处理,为
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- DeepSeek本地部署必要性分析及云端替代方案推荐
Asher_Yao
人工智能
一、本地部署适用场景分析硬件要求完整版模型需≥32GB显存(推荐NVIDIAA100/A800)基础版也需RTX3090级别显卡(约150W功耗)适用人群建议✔️企业用户:需私有化部署处理敏感数据✔️研究人员:需定制模型微调✔️开发者:需API深度集成维护成本单节点年运维成本≈¥18,000(含电费/散热)二、已验证的云端替代方案(2025.2实测)方案1:硅基流动SaaS平台技术特性:支持API
- Python 布尔类型深度剖析:与其他数据类型的对比及应用
tekin
Python编程秘籍库python开发语言Python布尔类型深度剖析数据类型的对比及应用
Python布尔类型深度剖析:与其他数据类型的对比及应用本文将深入探讨Python中的布尔类型,详细介绍布尔类型的定义、特性、运算规则以及使用场景。同时,将布尔类型与数字类型、字符串类型、列表等其他常见数据类型进行全面对比,帮助读者清晰地理解它们之间的差异和联系。此外,还会对相关联的知识点进行拓展深化,让读者能够更加灵活地运用布尔类型进行Python编程。文章目录Python布尔类型深度剖析:与其
- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟