wandb
# self.act = nn.Identity() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = nn.Tanh() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = nn.Sigmoid() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = nn.ReLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = nn.LeakyReLU(0.1) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = nn.Hardswish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = Mish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = FReLU(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = AconC(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = MetaAconC(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = SiLU_beta(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = FReLU_noBN_biasFalse(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# self.act = FReLU_noBN_biasTrue(c2) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
对比实验图:
其中FRelu达到的最好的效果,但是针对与yolov5s小模型比较友好,会增加计算量
GitHub
实验图,最高的是16*16的dw deconv
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # the origin nn.Upsample layer
# [-1, 1, nn.ConvTranspose2d, [512, 2, 2]], # nn.ConvTransposed2d with 2x2 deconv kernel
# [-1, 1, nn.ConvTranspose2d, [512, 4, 2, 1]], # nn.ConvTransposed2d with 4x4 deconv kernel
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # the origin nn.Upsample layer
# [-1, 1, nn.ConvTranspose2d, [256, 2, 2]], # nn.ConvTransposed2d with 2x2 deconv kernel
# [-1, 1, nn.ConvTranspose2d, [256, 4, 2, 1]], # nn.ConvTransposed2d with 4x4 deconv kernel
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
# the parse_model of yolo.py should be changed from
# if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
# BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
# to
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d]:
# YOLOv5 v6.0 head with Deconvolution Upsample
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.ConvTranspose2d, [512, 4, 2, 1, 0, 512]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.ConvTranspose2d, [256, 4, 2, 1, 0, 256]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d):
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.ConvTranspose2d:
if len(args) >= 7:
args[6] = make_divisible(args[6] * gw, 8)
结论 :不同位置的dwconv可以在yolov5s上得到涨点,
github
wandb
添加方式:yolov5s-dw5l21,yolov5s代表模型网络结构,dw5l为卷积核为5,21代表为在第21层添加
# YOLOv5 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, DWConv, [1024, 7, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, DWConv, [512, 7, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]