指静脉代码学习---13.深度学习的应用代码

一、AlexNet网络

#-*- coding:utf-8 -*-
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dropout, Flatten, Dense
from keras.utils import plot_model
import matplotlib.pyplot as plt
from keras.utils import multi_gpu_model
import os
from read_data import get_data
#from get_tfr_data import get_data

from sklearn.cross_validation import cross_val_score # K折交叉验证模块

'消除警告'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

size = 128     #图片尺寸

def Model():
    # 搭建卷积神经网络
    model = Sequential()

    model.add(Conv2D(filters = 8,
                     kernel_size = (7, 7),
                     strides = (2,2),
                     padding = 'same',
                     input_shape = (size,size,1),
                     activation = 'relu' ))
    model.add(MaxPooling

你可能感兴趣的:(指静脉识别,深度学习,学习)