1.效果展示【label:目标检测:概率+针对检测框的细分类(颜色情绪都行,此部分标签可自定义)】:
1.1目标检测+颜色识别
1.2人物检测+情绪检测
1.3针对特定类别的自动裁切效果+情绪识别结果
ps.毕业设计结束后所有代码将会开源
2.以下仅为search.py代码:
import argparse
import datetime
import os
import sys
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from Tools.AddLabels import Addlabels
from Tools.CudaIsAvailable import CudaIsAvailable
from CustomLabels import class_names_custom, class_numbers_custom
from Tools.OpenLabelWeb import OpenLabelWeb
from Tools.SaveOriImgs import save_oriImgs
from Tools.labels import class_names1, class_numbers1, class_numbers2, class_names2
from lib_forSearch.Models.experimental import attempt_load
from Tools.printTerminal import printTerminal
from lib_forSearch.Utils.datasets import LoadStreams, LoadImages
from lib_forSearch.Utils.general import check_img_size, check_imshow, non_max_suppression, scale_coords, xyxy2xywh, \
strip_optimizer, set_logging, increment_path
from lib_forSearch.Utils.plots import plot_one_box
from lib_forSearch.Utils.torch_utils import select_device, time_synchronized
# pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package清华镜像
# print Local Time
def LocalTime():
LocalTime = time.strftime("%Y{y}%m{m}%d{d} %H{h}%M{min}%S{s}").format(y='年', m='月', d='日', h='时', min='分', s='秒')
print(f'现在是北京时间:{LocalTime}')
#main function
def search():
# Local Time
LocalTime()
# TODO printTerminal
printTerminal()
# 检测目标名字与编号字典
def choose():
while True:
classNum = input(f'请选择label编号【1:coco80、2Mechanical part defect: 、3:custom labels】:')
if classNum != '':
classNum = int(classNum)
break
# TODO CustomLabel if you want to detect custom label classes, you need 1.class_names_custom & 2.class_numbers_custom (of 3.course:custom.pt)
NAMES = (class_names1, class_names2, class_names_custom)
NUMBERS = (class_numbers1, class_numbers2, class_numbers_custom)
classNum = classNum - 1
class_names = NAMES[classNum]
class_numbers = NUMBERS[classNum]
print(f'System path:{sys.path}')
print('\n以下是阔以被检测的类别^-^These are the number of detection objects:')
for i in class_names:
print('class_names[{}] is {}'.format(i, class_names[i]))
return class_numbers, class_names
while True:
class_numbers, class_names = choose()
if input(f'\nAre you sure:[y/n]\n') == 'y' or '':
break
print('----------------------选一个吧Please choose one-…-搞快点come on------------------------------------')
# 模型参数选择 TODO weights choose
Model_path = input('model path[such as : result/P36_v5s6_1to150/weights/best.pt ]:')
if Model_path == '':
Model_path = r'pretrained\yolov5s6.pt' # 文件在项目内部,相对路径就行;如果文件在项目外,则需要绝对地址
print(rf'pretrained model is :{Model_path}')
# 筛选用参数
Confidence = input(f'confidence:[default 0.1]:') # 检测框的置信度(有多大把握把检测目标正好框进去),大于此的才保留
if Confidence == '':
Confidence = 0.1
Confidence = float(Confidence)
IOU = input(f'IOU:[default 0.40]:') # 非极大抑制(IOU代表检测框的重合度),大于此的即舍弃
if IOU == '':
IOU = 0.4
IOU = float(IOU)
Img_size = 1280 # 输入图像大小,最好和网络模型对应(640或1280)
print(f'Confidence:{Confidence},IOU:{IOU}')
# # 是否开启二级分类器
# OpenClassify = False
while True:
# 待检测文件地址
def Input():
while True:
Input_path = str(input(rf'under detected file path[default : datasets/Mac2_100/images/val]:'))
if Input_path != '':
return Input_path
Input_path = Input()
Aclasses = ['background'] # , 'person', 'car', 'bicycle'
# TODO 可以直接把想要检测的类别写入Aclasses列表,然后注释掉下面的 Addlabels() 部分。
# 另外:detect()只会检测同时包含在Aclasses和classes in model 的类别,所有放心大胆地往Aclasses中塞东西吧
if input(f'all classes or specific class(es):[all/sp]') == ('sp' or ''):
Addlabels(class_numbers, class_names, Aclasses)
else:
for i in class_names:
Aclasses.append(class_names[i])
print(f'classes that you choose:{Aclasses}')
# 文件夹保存地址
Save_path = r'output/' + Aclasses[1]
# 保存文件夹名称
define = '%Y_%m_%d %H_%M_%S'
system_time = datetime.datetime.now().strftime(define)
Save_name = system_time
# 检测函数
def detect(save_img=False):
# TODO 阈值
thresholdValue = input(f'是否交由专家标注的阈值[0.50]:')
if thresholdValue == '':
thresholdValue = 0.50
# TODO 底线
BottomLine = input(f'是否交由专家标注的底线[0.15]:')
if BottomLine == '':
BottomLine = 0.15
print(f'thresholdValue:{thresholdValue},BottomLine:{BottomLine}')
#导入opt参数
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
label_imgs = 0
# 路径
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
expertPath = str(save_dir) + fr'\expertLabel{BottomLine}_{thresholdValue}'
# TODO 必须放在if/else外面,不然出了if/else(即使在函数内部)也是未定义;否则用global定义全局变量
# 初始化(检测设备硬件和CUDA)
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# 加载模型
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# # 二级分类器
# classify = OpenClassify
# if classify:
# modelc = load_classifier(name='resnet101', n=2) # 初始化
# modelc.load_state_dict(
# torch.load(r'C:\Users\cleste/.cache\torch\hub\checkpoints\resnet101-5d3b4d8f.pth', map_location=device)[
# 'model']).to(device).eval()
# 设置Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# 获取名称和颜色
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# 运行inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# 应用NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# # 应用分类器
# if classify:
# pred = apply_classifier(pred, modelc, img, im0s)
# 过程检测
for i, det in enumerate(pred):
# detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + (
'' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# 将检测框从 img_size 缩放到 im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# print 结果:输出信息:检测到的各个类别与个数
for c in det[:, -1].unique():
if names[int(c)] in Aclasses: # 只检测Aclasses这特定的类
n = (det[:, -1] == c).sum() # 检测每个类
s += f'\n-----------------------------------------------------------这是第{label_imgs + 1}个检测目标-----------------------------------------------------------'
s += f"\n检查结果为 类别:{names[int(c)]},其数量:{n} 。{'不止一个哦!' * (n > 1)} " # 添加检测结果说明
label_imgs += 1
# Write 结果:
# 1.保存预测信息: txt
# 2.在图像上画框
# 3.crop_img(裁切图片)
for *xyxy, conf, cls in reversed(det):
if names[int(cls)] in Aclasses:
if save_img or view_img: # Add bbox to image
# TODO better to use conf(idence)
label = f'{names[int(cls)]}: {conf * 100:.2f}%'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label 格式化
#float格式化
thresholdValue = float(thresholdValue)
BottomLine = float(BottomLine)
# TODO 单独保存conf从阈值到1之间的标签
if (float(conf) >= thresholdValue) and (float(conf) <= 1):
# pass
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# TODO 单独保存conf从底线到阈值之间的标签
if (float(conf) >= BottomLine) and (float(conf) < thresholdValue):
expertLabelPath = expertPath + fr'\labels'
# 不存在则创建
if not os.path.exists(expertLabelPath):
os.makedirs(expertLabelPath)
with open(expertLabelPath + rf'\{p.stem}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# 将检测数据统一写入包含置信度的txt为文件
with open(str(save_dir) + r'\confidence.txt', 'a') as f:
f.write(f'{p.stem} ' + ('%g ' * len(line)).rstrip() % line + f' {conf}\n')
# Print time (inference + NMS)
print(f'{s}')
print(f'这张图片搞定了!inference 与NMS共耗时:{t2 - t1:.3f}秒\n')
# Stream results:是否需要显示预测后的结果 img0(此时已将pred结果可视化到了img0中)
# TODO --view-img
if view_img:
if names[int(cls)] in Aclasses:
cv2.imshow(str(p), im0)
cv2.waitKey(2) # 图片显示停留时间
# Save results (image with detections):是否需要保存图片或视频(检测后的图片/视频 里面已经被画好了框的) img0
if save_img:
if names[int(cls)] in Aclasses:
cv2.imwrite(save_path, im0)
# 保存原图
save_im0s = 1
if save_im0s:
cv2.imwrite(save_path, im0s)
else: # 'video' or 'stream'
if names[int(cls)] in Aclasses:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} 个标签已经保存到了以下地址: {save_dir / 'labels'}" if save_txt else ''
print(f"{s}")
print(f'检测程序结束运行,总共耗时:{time.time() - t0:.3f}秒')
return expertPath
# parameters configuration
parser = argparse.ArgumentParser()
# 模型参数(pt文件)地址
parser.add_argument('--weights', nargs='+', type=str, default=Model_path, help='model.pt path(s)')
# 待检测目标(会读取文件夹下所有)
parser.add_argument('--source', type=str, default=Input_path, help='source') # file/folder, 0 for webcam
# 输入图像大小,最好和网络模型对应(640或1280)
parser.add_argument('--img-size', type=int, default=Img_size, help='inference size (pixels)')
# 检测框的置信度(有多大把握把人物正好框进去)
parser.add_argument('--conf-thres', type=float, default=Confidence, help='object confidence threshold')
# 非极大抑制(IOU代表检测框的重合度)
parser.add_argument('--iou-thres', type=float, default=IOU, help='IOU threshold for NMS')
# 硬件选择(CPU还是GPU)
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
# 以下需可以在 编辑配置 中添加 形参 以决定False or True(默认为False,输入--view-img这一项便为True:view-img = True)
# 是否显示检测过程(img by img)
parser.add_argument('--view-img', action='store_true', help='display results')
# 是否在保存labels文件.txt
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
# 是否保存置信度
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
# 是否保存被检测对象
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
# 是否增强NMS,会更加强大、提升结果
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
# 同是增强检测效果
parser.add_argument('--augment', action='store_true', help='augmented inference')
# 为True只保留本模型需要的东西
parser.add_argument('--update', action='store_true', help='update all Models')
# 保存文件同名时是否新增一个文件夹保存(为True会保存在同名的文件夹下)
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
# 决定保留class多少的结果(--class 0)
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
# 保存地址
parser.add_argument('--project', default=Save_path, help='save results to project/name')
# 保存文件名
parser.add_argument('--name', default=Save_name, help='save results to project/name')
opt = parser.parse_args()
print(f'parser.parse_args(分析程序的参数):\n{opt}')
# check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # 更新所有模型(修复SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
ExpertPath = detect()
strip_optimizer(opt.weights)
else:
ExpertPath = detect()
print(
f'\nHi,congratulation!Don t forget '
f'\n1.pt file path:{Model_path}'
f'\n2.imgs path:{Input_path}'
f'\nNow,you can see the result in {Save_path}/{Save_name}'
f'\nAnd then you can fix these labels in labelling or webs such as makesence! '
f'Because human brain is the best computer for now,lol ^_^')
if input(f'\nDo you want to save original photos with their labels in save directory?[y/n]:') == 'y':
# TODO: save original photos with their labels
Save_path = Save_path + '/' + Save_name
print(f'以下是直接参与后续微调的图片:')
save_oriImgs(Save_path, Input_path)
print(f'以下是expertLabel images:')
save_oriImgs(ExpertPath, Input_path)
else:
print(
f'\nHi hi hi, therefore you don t want to save original photos, I have to remind you again: \nORIGINAL PHOTOS PATH:{Input_path}')
if input(f'\nAre you sure to reconfiguration[y/n]:') == 'y':
break
return Save_path
if __name__ == '__main__':
#global ExpertPath
# cuda可用性检查
CudaIsAvailable()
# main recurrent
while True:
datasetPath = search()
print('\nIf you don t want to exit please [input n], or you can reconfiguration:')
if input(f'Are you sure to exit:') == 'exit':
break
# 打开标注网站(以便人工修改)
Relabelled = input(f'\nHi hi,I forget one thing ! Do you want to Manual finishing labeling now?[y/n]:')
if Relabelled == 'y':
# labelling Web introduction blog: https://blog.csdn.net/To_ChaRiver/article/details/119619515
OpenLabelWeb()
print(f'See you next time and dont forget you dataset are sleeping in :{datasetPath} !')
依赖版本:Yolov5 5.0
ps. class类别选择
Aclasses = ['background']
while True:
# 想要检测的类别
while True:
while True:
transNum = input(f'number or name[1/2]:')
if transNum == '1':
Class_name = int(input('input the class you want to detect:'))
break
elif transNum == '2':
Class_name = input('input the class you want to detect:')
break
c = Class_name
print(f'Class_name:{c}')
bool1 = c in class_numbers
print(f'bool1:{bool1}')
bool2 = c in class_names # 不一定要bool,bl也行(任何字符串转一下就行)
print(f"bool2:{bool2}")
# if bool == True: # Class_name in class_numbers == True一直返回False就很奇怪
bool = bool1 or bool2
print(f'输入判别:{bool}')
if bool1:
print(f'即将检测含有{c}的图片>_<\n')
break
else:
if bool2:
print(f'即将检测含有{class_names[c]}的图片')
break
else:
print('\n请输入class中有的目标名称或编号')
if transNum == '1':
class_input = class_names[int(c)]
if class_input not in Aclasses:
Aclasses.append(class_input)
else:
if c not in Aclasses:
Aclasses.append(c)
enough = input('enough [input y] ?')
if enough == 'y':
break
print(f'{Aclasses},so go on')
print(f'classes that you choose:{Aclasses}')