李沐动手学深度学习第4章-4.2多层感知机的从零开始实现

现在让我们尝试自己实现一个多层感知机。 为了与之前softmax回归获得的结果进行比较, 我们将继续使用Fashion-MNIST图像分类数据集。

代码如下:

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

 1. 初始化模型参数

Fashion-MNIST中的每个图像由 28×28=784个灰度像素值组成。 所有图像共分为10个类别。 忽略像素之间的空间结构, 我们可以将每个图像视为具有784个输入特征10个类的简单分类数据集。 首先,我们将实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元

对于每一层我们都要记录一个权重矩阵和一个偏置向量。 跟以前一样,我们要为损失关于这些参数的梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

2. 激活函数

为了确保我们对模型的细节了如指掌, 我们将实现ReLU激活函数, 而不是直接调用内置的relu函数。

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

3. 模型

因为我们忽略了空间结构, 所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。 只需几行代码就可以实现我们的模型。

def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法
    return (H@W2 + b2)

4. 损失函数

直接使用高级API中的内置函数来计算softmax和交叉熵损失。

loss = nn.CrossEntropyLoss(reduction='none')

5. 训练

多层感知机的训练过程与softmax回归的训练过程完全相同。 可以直接调用d2l包的train_ch3函数, 将迭代周期数设置为10,并将学习率设置为0.1.

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

李沐动手学深度学习第4章-4.2多层感知机的从零开始实现_第1张图片

 6、预测

d2l.predict_ch3(net, test_iter)

李沐动手学深度学习第4章-4.2多层感知机的从零开始实现_第2张图片

 

你可能感兴趣的:(深度学习,人工智能,神经网络)