之前已经对MNIST使用过SVM和KNN的方法进行分类,效果看起来还不错。今天使用决策树来实验,看看结果如何。
使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵。
使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何。实验结果如下。
#Test change pixel data into more categories than 0/1:
#int(pixel)/50: 37%
#int(pixel)/64: 45.9%
#int(pixel)/96: 52.3%
#int(pixel)/128: 62.48%
#int(pixel)/152: 59.1%
#int(pixel)/176: 57.6%
#int(pixel)/192: 54.0%
可见,在对灰度数据进行二分类,也就是0/1处理时,效果是最好的。
使用0/1处理,最终结果如下:
#Result:
#Train with 10k, test with 60k: 77.79%
#Train with 60k, test with 10k: 87.3%
#Time cost: 3 hours.
最终结果是87.3%的正确率。与SVM和KNN的超过95%相比,差距不小。而且消耗时间更长。
需要注意的是,此次Decision Tree算法中,并未对决策树进行剪枝。因此,还有可以提升的空间。
python代码见最下面。其中:
calcShannonEntropy(dataSet):是对矩阵的熵进行计算,根据各个数据点的分类情况,使用香农定理计算;
splitDataSet(dataSet, axis, value): 是获取第axis维度上的值为value的所有行所组成的矩阵。对于第axis维度上的数据,分别计算他们的splitDataSet的矩阵的熵,并与该维度上数据的出现概率相乘求和,可以得到使用第axis维度构建决策树后,整体的熵。
chooseBestFeatureToSplit(dataSet): 根据splitDataSet函数,对比得到整体的熵与原矩阵的熵相比,熵的增量最大的维度。根据此维度feature来构建决策树。
createDecisionTree(dataSet, features): 递归构建决策树。若在叶子节点处没法分类,则采用majorityCnt(classList)方法统计出现最多次的class作为分类。
代码如下:
#Decision tree for MNIST dataset by arthur503.
#Data format: 'class label1:pixel label2:pixel ...'
#Warning: without fix overfitting!
#
#Test change pixel data into more categories than 0/1:
#int(pixel)/50: 37%
#int(pixel)/64: 45.9%
#int(pixel)/96: 52.3%
#int(pixel)/128: 62.48%
#int(pixel)/152: 59.1%
#int(pixel)/176: 57.6%
#int(pixel)/192: 54.0%
#
#Result:
#Train with 10k, test with 60k: 77.79%
#Train with 60k, test with 10k: 87.3%
#Time cost: 3 hours.
from numpy import *
import operator
def calcShannonEntropy(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featureVec in dataSet:
currentLabel = featureVec[0]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 1
else:
labelCounts[currentLabel] += 1
shannonEntropy = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEntropy -= prob * log2(prob)
return shannonEntropy
#get all rows whose axis item equals value.
def splitDataSet(dataSet, axis, value):
subDataSet = []
for featureVec in dataSet:
if featureVec[axis] == value:
reducedFeatureVec = featureVec[:axis]
reducedFeatureVec.extend(featureVec[axis+1:]) #if axis == -1, this will cause error!
subDataSet.append(reducedFeatureVec)
return subDataSet
def chooseBestFeatureToSplit(dataSet):
#Notice: Actucally, index 0 of numFeatures is not feature(it is class label).
numFeatures = len(dataSet[0])
baseEntropy = calcShannonEntropy(dataSet)
bestInfoGain = 0.0
bestFeature = numFeatures - 1 #DO NOT use -1! or splitDataSet(dataSet, -1, value) will cause error!
#feature index start with 1(not 0)!
for i in range(numFeatures)[1:]:
featureList = [example[i] for example in dataSet]
featureSet = set(featureList)
newEntropy = 0.0
for value in featureSet:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEntropy(subDataSet)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#classify on leaf of decision tree.
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount:
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#Create Decision Tree.
def createDecisionTree(dataSet, features):
print 'create decision tree... length of features is:'+str(len(features))
classList = [example[0] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeatureIndex = chooseBestFeatureToSplit(dataSet)
bestFeatureLabel = features[bestFeatureIndex]
myTree = {bestFeatureLabel:{}}
del(features[bestFeatureIndex])
featureValues = [example[bestFeatureIndex] for example in dataSet]
featureSet = set(featureValues)
for value in featureSet:
subFeatures = features[:]
myTree[bestFeatureLabel][value] = createDecisionTree(splitDataSet(dataSet, bestFeatureIndex, value), subFeatures)
return myTree
def line2Mat(line):
mat = line.strip().split(' ')
for i in range(len(mat)-1):
pixel = mat[i+1].split(':')[1]
#change MNIST pixel data into 0/1 format.
mat[i+1] = int(pixel)/128
return mat
#return matrix as a list(instead of a matrix).
#features is the 28*28 pixels in MNIST dataset.
def file2Mat(fileName):
f = open(fileName)
lines = f.readlines()
matrix = []
for line in lines:
mat = line2Mat(line)
matrix.append(mat)
f.close()
print 'Read file '+str(fileName) + ' to array done! Matrix shape:'+str(shape(matrix))
return matrix
#Classify test file.
def classify(inputTree, featureLabels, testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featureIndex = featureLabels.index(firstStr)
predictClass = '-1'
for key in secondDict.keys():
if testVec[featureIndex] == key:
if type(secondDict[key]) == type({}):
predictClass = classify(secondDict[key], featureLabels, testVec)
else:
predictClass = secondDict[key]
return predictClass
def classifyTestFile(inputTree, featureLabels, testDataSet):
rightCnt = 0
for i in range(len(testDataSet)):
classLabel = testDataSet[i][0]
predictClassLabel = classify(inputTree, featureLabels, testDataSet[i])
if classLabel == predictClassLabel:
rightCnt += 1
if i % 200 == 0:
print 'num '+str(i)+'. ratio: ' + str(float(rightCnt)/(i+1))
return float(rightCnt)/len(testDataSet)
def getFeatureLabels(length):
strs = []
for i in range(length):
strs.append('#'+str(i))
return strs
#Normal file
trainFile = 'train_60k.txt'
testFile = 'test_10k.txt'
#Scaled file
#trainFile = 'train_60k_scale.txt'
#testFile = 'test_10k_scale.txt'
#Test file
#trainFile = 'test_only_1.txt'
#testFile = 'test_only_2.txt'
#train decision tree.
dataSet = file2Mat(trainFile)
#Actually, the 0 item is class, not feature labels.
featureLabels = getFeatureLabels(len(dataSet[0]))
print 'begin to create decision tree...'
myTree = createDecisionTree(dataSet, featureLabels)
print 'create decision tree done.'
#predict with decision tree.
testDataSet = file2Mat(testFile)
featureLabels = getFeatureLabels(len(testDataSet[0]))
rightRatio = classifyTestFile(myTree, featureLabels, testDataSet)
print 'total right ratio: ' + str(rightRatio)