谷歌人工智能写作项目:神经网络伪原创
深度学习之损失函数与激活函数的选择在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结文案狗。其中使用的损失函数是均方差,而激活函数是Sigmoid。
实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?以下是本文的内容。MSE损失+Sigmoid激活函数的问题先来看看均方差+Sigmoid的组合有什么问题。
回顾下Sigmoid激活函数的表达式为:函数图像如下:从图上可以看出,对于Sigmoid,当z的取值越来越大后,函数曲线变得越来越平缓,意味着此时的导数σ′(z)也越来越小。
同样的,当z的取值越来越小时,也有这个问题。仅仅在z取值为0附近时,导数σ′(z)的取值较大。在均方差+Sigmoid的反向传播算法中,每一层向前递推都要乘以σ′(z),得到梯度变化值。
Sigmoid的这个曲线意味着在大多数时候,我们的梯度变化值很小,导致我们的W,b更新到极值的速度较慢,也就是我们的算法收敛速度较慢。那么有什么什么办法可以改进呢?
交叉熵损失+Sigmoid改进收敛速度Sigmoid的函数特性导致反向传播算法收敛速度慢的问题,那么如何改进呢?换掉Sigmoid?这当然是一种选择。
另一种常见的选择是用交叉熵损失函数来代替均方差损失函数。每个样本的交叉熵损失函数的形式:其中,?为向量内积。
这个形式其实很熟悉,在逻辑回归原理小结中其实我们就用到了类似的形式,只是当时我们是用最大似然估计推导出来的,而这个损失函数的学名叫交叉熵。
使用了交叉熵损失函数,就能解决Sigmoid函数导数变化大多数时候反向传播算法慢的问题吗?我们来看看当使用交叉熵时,我们输出层δL的梯度情况。
对比一下均方差损失函数时在δL梯度使用交叉熵,得到的的δl梯度表达式没有了σ′(z),梯度为预测值和真实值的差距,这样求得的Wl,bl的梯度也不包含σ′(z),因此避免了反向传播收敛速度慢的问题。
通常情况下,如果我们使用了sigmoid激活函数,交叉熵损失函数肯定比均方差损失函数好用。
对数似然损失+softmax进行分类输出在前面我们都假设输出是连续可导的值,但是如果是分类问题,那么输出是一个个的类别,那我们怎么用DNN来解决这个问题呢?
DNN分类模型要求是输出层神经元输出的值在0到1之间,同时所有输出值之和为1。很明显,现有的普通DNN是无法满足这个要求的。但是我们只需要对现有的全连接DNN稍作改良,即可用于解决分类问题。
在现有的DNN模型中,我们可以将输出层第i个神经元的激活函数定义为如下形式:这个方法很简洁漂亮,仅仅只需要将输出层的激活函数从Sigmoid之类的函数转变为上式的激活函数即可。
上式这个激活函数就是我们的softmax激活函数。它在分类问题中有广泛的应用。将DNN用于分类问题,在输出层用softmax激活函数也是最常见的了。
对于用于分类的softmax激活函数,对应的损失函数一般都是用对数似然函数,即:其中yk的取值为0或者1,如果某一训练样本的输出为第i类。则yi=1,其余的j≠i都有yj=0。
由于每个样本只属于一个类别,所以这个对数似然函数可以简化为:可见损失函数只和真实类别对应的输出有关,这样假设真实类别是第i类,则其他不属于第i类序号对应的神经元的梯度导数直接为0。
对于真实类别第i类,它的WiL对应的梯度计算为:可见,梯度计算也很简洁,也没有第一节说的训练速度慢的问题。
当softmax输出层的反向传播计算完以后,后面的普通DNN层的反向传播计算和之前讲的普通DNN没有区别。梯度爆炸or消失与ReLU学习DNN,大家一定听说过梯度爆炸和梯度消失两个词。
尤其是梯度消失,是限制DNN与深度学习的一个关键障碍,目前也没有完全攻克。什么是梯度爆炸和梯度消失呢?
简单理解,就是在反向传播的算法过程中,由于我们使用了是矩阵求导的链式法则,有一大串连乘,如果连乘的数字在每层都是小于1的,则梯度越往前乘越小,导致梯度消失,而如果连乘的数字在每层都是大于1的,则梯度越往前乘越大,导致梯度爆炸。
比如如下的梯度计算:如果不巧我们的样本导致每一层的梯度都小于1,则随着反向传播算法的进行,我们的δl会随着层数越来越小,甚至接近越0,导致梯度几乎消失,进而导致前面的隐藏层的W,b参数随着迭代的进行,几乎没有大的改变,更谈不上收敛了。
这个问题目前没有完美的解决办法。而对于梯度爆炸,则一般可以通过调整我们DNN模型中的初始化参数得以解决。
对于无法完美解决的梯度消失问题,一个可能部分解决梯度消失问题的办法是使用ReLU(RectifiedLinearUnit)激活函数,ReLU在卷积神经网络CNN中得到了广泛的应用,在CNN中梯度消失似乎不再是问题。
那么它是什么样子呢?其实很简单,比我们前面提到的所有激活函数都简单,表达式为:也就是说大于等于0则不变,小于0则激活后为0。
其他激活函数DNN常用的激活函数还有:tanh这个是sigmoid的变种,表达式为:tanh激活函数和sigmoid激活函数的关系为:tanh和sigmoid对比主要的特点是它的输出落在了[-1,1],这样输出可以进行标准化。
同时tanh的曲线在较大时变得平坦的幅度没有sigmoid那么大,这样求梯度变化值有一些优势。当然,要说tanh一定比sigmoid好倒不一定,还是要具体问题具体分析。
softplus这个其实就是sigmoid函数的原函数,表达式为:它的导数就是sigmoid函数。softplus的函数图像和ReLU有些类似。它出现的比ReLU早,可以视为ReLU的鼻祖。
PReLU从名字就可以看出它是ReLU的变种,特点是如果未激活值小于0,不是简单粗暴的直接变为0,而是进行一定幅度的缩小。如下图。
小结上面我们对DNN损失函数和激活函数做了详细的讨论,重要的点有:1)如果使用sigmoid激活函数,则交叉熵损失函数一般肯定比均方差损失函数好;2)如果是DNN用于分类,则一般在输出层使用softmax激活函数和对数似然损失函数;3)ReLU激活函数对梯度消失问题有一定程度的解决,尤其是在CNN模型中。
平滑函数。交叉熵损失函数,也称为对数损失或者logistic损失。当模型产生了预测值之后,将对类别的预测概率与真实值(由0或1组成)进行不比较,计算所产生的损失,然后基于此损失设置对数形式的惩罚项。
在神经网络中,所使用的Softmax函数是连续可导函数,这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,这样就可以相应地调整模型的权重以最小化损失函数。
扩展资料:注意事项:当预测类别为二分类时,交叉熵损失函数的计算公式如下图,其中y是真实类别(值为0或1),p是预测类别的概率(值为0~1之间的小数)。
计算二分类的交叉熵损失函数的python代码如下图,其中esp是一个极小值,第五行代码clip的目的是保证预测概率的值在0~1之间,输出的损失值数组求和后,就是损失函数最后的返回值。
参考资料来源:百度百科-交叉熵参考资料来源:百度百科-损失函数。
这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。
其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下:而交叉熵则是为了防止网络在训练后期迟缓而提出的一种损失函数,计算方式如下:
这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。
其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下:而交叉熵则是为了防止网络在训练后期迟缓而提出的一种损失函数,计算方式如下:
交叉熵损失函数也称为对数损失或者logistic损失。当模型产生了预测值之后,将对类别的预测概率与真实值(由0或1组成)进行不比较,计算所产生的损失,然后基于此损失设置对数形式的惩罚项。
在神经网络中,所使用的Softmax函数是连续可导函数,这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,这样就可以相应地调整模型的权重以最小化损失函数。
交叉熵的计算方式如下:交叉熵可在机器学习中作为损失函数,p代表真实标记的分布,q则代表训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。
交叉熵作为损失函数还有一个好处是:使用sigmoid函数在梯度下降时,可以避免均方误差损失函数学习速率下降的问题,这是因为学习速率是能够被输出的误差所控制的。