在TensorFlow中读取数据一般有两种方法:
Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。
首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:
假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。
如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:
读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!
而在tensorflow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。
为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。
tensorflow使用文件名队列+内存队列双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。
程序运行后,内存队列首先读入A(此时A从文件名队列中出队):
再依次读入B和C:
此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是tensorflow中读取数据的基本机制。如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。
如何在tensorflow中创建上述的两个队列呢?
对于文件名队列,我们使用tf.train.string_input_producer函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。
此外tf.train.string_input_producer还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:
如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:
在tensorflow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。
除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。
在我们使用tf.train.string_input_producer创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。
而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。
我们用一个具体的例子感受tensorflow中的数据读取。如图,假设我们在当前文件夹中已经有A.jpg、B.jpg、C.jpg三张图片,我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中。
# 导入tensorflow
import tensorflow as tf
# 新建一个Session
with tf.Session() as sess:
# 我们要读三幅图片A.jpg, B.jpg, C.jpg
filename = ['A.jpg', 'B.jpg', 'C.jpg']
# string_input_producer会产生一个文件名队列
filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
# reader从文件名队列中读数据。对应的方法是reader.read
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
# tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
tf.local_variables_initializer().run()
# 使用start_queue_runners之后,才会开始填充队列
threads = tf.train.start_queue_runners(sess=sess)
i = 0
while True:
i += 1
# 获取图片数据并保存
image_data = sess.run(value)
with open('read/test_%d.jpg' % i, 'wb') as f:
f.write(image_data)
我们这里使用filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)建立了一个会跑5个epoch的文件名队列。并使用reader读取,reader每次读取一张图片并保存。
运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:
如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:
我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。
下面就详细地介绍一下Dataset API的使用方法(包括在非Eager模式和Eager模式下两种情况)。
在TensorFlow 1.3中,Dataset API是放在contrib包中的:
tf.contrib.data.Dataset
而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员:
tf.data.Dataset
下面的示例代码将以TensorFlow 1.4版本为例,如果使用TensorFlow 1.3的话,需要进行简单的修改(即加上contrib)。
让我们从基础的类来了解Dataset API。参考Google官方给出的Dataset API中的类图:
在初学时,我们只需要关注两个最重要的基础类:Dataset和Iterator。
Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。
先以最简单的,Dataset的每一个元素是一个数字为例:
import tensorflow as tf
import numpy as np
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
这样,我们就创建了一个dataset,这个dataset中含有5个元素,分别是1.0, 2.0, 3.0, 4.0, 5.0。
如何将这个dataset中的元素取出呢?方法是从Dataset中示例化一个Iterator,然后对Iterator进行迭代。
在非Eager模式下,读取上述dataset中元素的方法为:
iterator = dataset.make_one_shot_iterator()
one_element = iterator.get_next()
with tf.Session() as sess:
for i in range(5):
print(sess.run(one_element))
对应的输出结果应该就是从1.0到5.0。语句iterator = dataset.make_one_shot_iterator()从dataset中实例化了一个Iterator,这个Iterator是一个“one shot iterator”,即只能从头到尾读取一次。one_element = iterator.get_next()表示从iterator里取出一个元素。由于这是非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。
如果一个dataset中元素被读取完了,再尝试sess.run(one_element)的话,就会抛出tf.errors.OutOfRangeError异常,这个行为与使用队列方式读取数据的行为是一致的。在实际程序中,可以在外界捕捉这个异常以判断数据是否读取完,请参考下面的代码:
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
iterator = dataset.make_one_shot_iterator()
one_element = iterator.get_next()
with tf.Session() as sess:
try:
while True:
print(sess.run(one_element))
except tf.errors.OutOfRangeError:
print("end!")
在Eager模式中,创建Iterator的方式有所不同。是通过tfe.Iterator(dataset)的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run():
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
for one_element in tfe.Iterator(dataset):
print(one_element)
之前我们用tf.data.Dataset.from_tensor_slices创建了一个最简单的Dataset:
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
其实,tf.data.Dataset.from_tensor_slices的功能不止如此,它的真正作用是切分传入Tensor的第一个维度,生成相应的dataset。
例如:
dataset = tf.data.Dataset.from_tensor_slices(np.random.uniform(size=(5, 2)))
传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。
在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个Python中的元组,或是Python中的词典。例如,在图像识别问题中,一个元素可以是{"image": image_tensor, "label": label_tensor}的形式,这样处理起来更方便。
tf.data.Dataset.from_tensor_slices同样支持创建这种dataset,例如我们可以让每一个元素是一个词典:
dataset = tf.data.Dataset.from_tensor_slices(
{
"a": np.array([1.0, 2.0, 3.0, 4.0, 5.0]),
"b": np.random.uniform(size=(5, 2))
}
)
这时函数会分别切分"a"中的数值以及"b"中的数值,最终dataset中的一个元素就是类似于{"a": 1.0, "b": [0.9, 0.1]}的形式。
利用tf.data.Dataset.from_tensor_slices创建每个元素是一个tuple的dataset也是可以的:
dataset = tf.data.Dataset.from_tensor_slices(
(np.array([1.0, 2.0, 3.0, 4.0, 5.0]), np.random.uniform(size=(5, 2)))
)
Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。
常用的Transformation有:
下面就分别进行介绍。
(1)map
map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
dataset = dataset.map(lambda x: x + 1) # 2.0, 3.0, 4.0, 5.0, 6.0
(2)batch
batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:
dataset = dataset.batch(32)
(3)shuffle
shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:
dataset = dataset.shuffle(buffer_size=10000)
(4)repeat
repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:
dataset = dataset.repeat(5)
如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:
dataset = dataset.repeat()
讲到这里,我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。
对应的程序为(从官方示例程序修改而来):
# 函数的功能时将filename对应的图片文件读进来,并缩放到统一的大小
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized, label
# 图片文件的列表
filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])
# label[i]就是图片filenames[i]的label
labels = tf.constant([0, 37, ...])
# 此时dataset中的一个元素是(filename, label)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
# 此时dataset中的一个元素是(image_resized, label)
dataset = dataset.map(_parse_function)
# 此时dataset中的一个元素是(image_resized_batch, label_batch)
dataset = dataset.shuffle(buffersize=1000).batch(32).repeat(10)
在这个过程中,dataset经历三次转变:
除了tf.data.Dataset.from_tensor_slices外,目前Dataset API还提供了另外三种创建Dataset的方式:
它们的详细使用方法可以参阅文档:Module: tf.data
在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_one_shot_iterator()来创建一个one shot iterator。除了这种one shot iterator外,还有三个更复杂的Iterator,即:
initializable iterator必须要在使用前通过sess.run()来初始化。使用initializable iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator。一个简单的initializable iterator使用示例:
limit = tf.placeholder(dtype=tf.int32, shape=[])
dataset = tf.data.Dataset.from_tensor_slices(tf.range(start=0, limit=limit))
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
sess.run(iterator.initializer, feed_dict={limit: 10})
for i in range(10):
value = sess.run(next_element)
assert i == value
此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。
initializable iterator还有一个功能:读入较大的数组。
在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):
# 从硬盘中读入两个Numpy数组
with np.load("/var/data/training_data.npy") as data:
features = data["features"]
labels = data["labels"]
features_placeholder = tf.placeholder(features.dtype, features.shape)
labels_placeholder = tf.placeholder(labels.dtype, labels.shape)
dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
iterator = dataset.make_initializable_iterator()
sess.run(iterator.initializer, feed_dict={features_placeholder: features,
labels_placeholder: labels})
reinitializable iterator和feedable iterator相比initializable iterator更复杂,也更加少用,如果想要了解它们的功能,可以参阅官方介绍,这里就不再赘述了。
本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。
在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。
在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。
作为兼容两种模式的Dataset API,在今后应该会成为TensorFlow读取数据的主流方式。