### 精细模型设计
### 模型裁剪及权重共享复用
### 低秩近似
### 知识蒸馏
### 核的稀疏化
### 模型量化(网络二值化)
就是通过去除网络中冗余的channels,filters, neurons, or
layers以得到一个更轻量级的网络,同时不影响性能。
代表性的工作有:
奇异值分解SVD(NIPS 2014):Exploiting linear structure within convolutional
networks for efficient evaluation
韩松(ICLR 2016):Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding
(NIPS 2015):Learning both weights and connections for efficient neural
network
频域压缩(NIPS 2016):Packing convolutional neural networks in the frequency
domain
剪Filter Reconstruction Error(ICCV 2017):Thinet: A filter level pruning method
for deep neural network compression
LASSO regression(ICCV 2017):Channel pruning for accelerating very deep neural
networks
Discriminative channels(NIPS 2018):Discrimination-aware channel pruning for
deep neural networks
剪枝(ICCV 2017):Channel pruning for accelerating very deep neural networks
neuron level sparsity(ECCV 2017):Less is more: Towards compact cnns
Structured Sparsity Learning(NIPS 2016):Learning structured sparsity in deep
neural networks
蒸馏就是过模仿教师网络生成的软标签将知识从大的,预训练过的教师模型转移到轻量级的学生模型
代表性的工作有:
Hinton(NIPS 2015):Distilling the knowledge in a neural network
中间层的特征作为提示(ICLR 2015):Fitnets: Hints for thin deep nets
多个Teacher(SIGKDD 2017):Learning from multiple teacher networks
两个特征得新知识再transfer(CVPR 2017):A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning
量化就是减少权重等的表示的位数,比如原来网络权值用32 bit存储,现在我只用8
bit来存储,以减少模型的Memory为原来的 [公式]
;更有甚者使用二值神经网络。代表性的工作有:
(ICML 2015):Compressing neural networks with the hashing trick
(NIPS 2015):Learning both weights and connections for efficient neural
network
(CVPR 2018):Quantization and training of neural networks for efficient
integer-arithmetic-only inference
(CVPR 2016):Quantized convolutional neural networks for mobile devices
(ICML 2018):Deep k-means: Re-training and parameter sharing with harder
cluster assignments for compressing deep convolutions
(CVPR 2019):Learning to quantize deep networks by optimizing quantization
intervals with task loss
(CVPR 2019):HAQ: Hardware-Aware automated quantization with mixed precision.
二值神经网络:
Binarized weights(NIPS 2015):BinaryConnect: Training deep neural networks with
binary weights during propagations
Binarized activations(NIPS 2016):Binarized neural networks
XNOR(ECCV 2016):Xnor-net: Imagenet classification using binary convolutional
neural networks
more weight and activation(NIPS 2017):Towards accurate binary convolutional
neural network
(ECCV 2020):Learning Architectures for Binary Networks
(ECCV 2020):BATS: Binary ArchitecTure Search
低秩分解就是将原来大的权重矩阵分解成多个小的矩阵,而小矩阵的计算量都比原来大矩阵的计算量要小。代表性的工作有:
低秩分解(ICCV 2017):On compressing deep models by low rank and sparse
decomposition
乐高网络(ICML 2019):Legonet: Efficient convolutional neural networks with lego
filters
奇异值分解(NIPS 2014):Exploiting Linear Structure Within Convolutional
Networks for Efficient Evaluation
轻量化模块设计就是设计一些计算效率高,适合在端侧设备上部署的模块。代表性的工作有:
Bottleneck(ICLR 2017):Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and 0.5 mb model size
MobileNet(CVPR 2017):Mobilenets: Efficient convolutional neural networks for
mobile vision applications
ShuffleNet(CVPR 2018):Shufflenet: An extremely efficient convolutional neural
network for mobile devices
SE模块(CVPR 2018):Squeeze-and-excitation networks
无参数的Shift操作(CVPR 2018):Shift: A zero flop, zero parameter alternative to
spatial convolutions
Shift操作填坑(Arxiv):Shift-based primitives for efficientconvolutional neural
networks
多用卷积核(NIPS 2018):Learning versatile filters for efficient convolutional
neural networks
GhostNet(CVPR 2020):GhostNet: More features from cheap operations
基于滤波器骨架的逐条剪枝算法,刷新滤波器剪枝的SOTA效果;
https://github.com/fxmeng/Pruning-Filter-in-Filter
**6
加法网络就是:利用卷积所计算的互相关性其实就是一种“相似性的度量方法”,所以在神经网络中用加法代替乘法,在减少运算量的同时获得相同的性能。**代表性的工作有:
**(CVPR 20):**AdderNet: Do We Really Need Multiplications in Deep Learning?
**(NIPS 20):**Kernel Based Progressive Distillation for Adder Neural Networks
**(Arxiv):**AdderSR: Towards Energy Efficient Image Super-Resolution
(ICCV 2017):清华张长水,黄高团队:Learning Efficient Convolutional Networks
through Network Slimming
(ECCV 2020):得克萨斯大学奥斯汀分校团队:GAN Slimming: All-in-One GAN
Compression by A Unified Optimization Framework
https://github.com/topics/pytorch-deep-compression
https://www.cocopie.ai/
https://cloud.tencent.com/developer/article/1593211
https://www.cocopie.ai/
https://www.volcengine.cn/