MATLAB图像处理的霍夫变换相关函数及其基本运算123

霍夫变换是一种特征检测(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。他的算法流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空间(parameter space)中执行投票来决定物体的形状,而这是由累加空间(accumulator space)里的局部最大值(local maximum)来决定。
现在广泛使用的霍夫变换是由RichardDuda和PeterHart在公元1972年发明,并称之为广义霍夫变换(generalizedHoughtransform),广义霍夫变换和更早前1962年的PaulHough的专利有关。经典的霍夫变换是侦测图片中的直线,之后,霍夫变换不仅能识别直线,也能够识别任何形状,常见的有圆形、椭圆形。
1981年,因为DanaH.Ballard的一篇期刊论文"Generalizing the Hough transform to detect arbitrary shapes",让霍夫变换开始流行于计算机视觉界。
常有的子问题是侦测某些简单的直线、圆形、椭圆形。在多数情况下,边缘侦测器(edge detector)会先用来做图片前处理,将原本的图片变成只含有边缘的图片。因为图片的不完美或是边缘侦测的不完美,导致有些点(point)或像素(pixel)缺漏,或是有噪声使得边缘侦测器所得的边界偏离了实际的边界。所以无法直观的将检测出的边缘分成直线、圆形、椭圆形的集合,而霍夫变换解决上述问题,借由霍夫变换算法中的投票步骤,在复杂的参数空间中找到图形的参数,电脑可以由参数得知该边缘(edge)是哪种形状。

MATLAB图像处理的

你可能感兴趣的:(matlab2020B,算法,计算机视觉,matlab,图像处理,机器学习)