bounding_box_test:测试集,gallery
bounding_box_train:训练集
query:prob
gt_query:手工标注(基本弃用)
gt_bbox:手工标注(基本弃用)
举例:0001_c1s1_001051_00.jpg
0001:person ID,最大1501
c1:相机ID,最大6
s1:序列信息
001051:帧ID
00:bounding box ID
(IDM-main/idm/datasets/market1501.py)
from __future__ import print_function, absolute_import
import os.path as osp
import glob
import re
from ..utils.data import BaseImageDataset
class Market1501(BaseImageDataset):
"""
Market1501
Reference:
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
URL: http://www.liangzheng.org/Project/project_reid.html
Dataset statistics:
# identities: 1501 (+1 for background)
# images: 12936 (train) + 3368 (query) + 15913 (gallery)
"""
dataset_dir = 'market1501'
# **kwargs:一些不确定的参数
def __init__(self, root, verbose=True, **kwargs):
super(Market1501, self).__init__()
self.dataset_dir = osp.join(root, self.dataset_dir)
self.train_dir = osp.join(self.dataset_dir, 'bounding_box_train')
self.query_dir = osp.join(self.dataset_dir, 'query')
self.gallery_dir = osp.join(self.dataset_dir, 'bounding_box_test')
self._check_before_run()
train = self._process_dir(self.train_dir, relabel=True)
query = self._process_dir(self.query_dir, relabel=False)
gallery = self._process_dir(self.gallery_dir, relabel=False)
if verbose:
print("=> Market1501 loaded")
self.print_dataset_statistics(train, query, gallery)
self.train = train
self.query = query
self.gallery = gallery
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
# 判断文件夹的路径是否存在问题
def _check_before_run(self):
"""Check if all files are available before going deeper"""
if not osp.exists(self.dataset_dir):
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
if not osp.exists(self.train_dir):
raise RuntimeError("'{}' is not available".format(self.train_dir))
if not osp.exists(self.query_dir):
raise RuntimeError("'{}' is not available".format(self.query_dir))
if not osp.exists(self.gallery_dir):
raise RuntimeError("'{}' is not available".format(self.gallery_dir))
# 获取图片的路径,标注信息(person id,camera id)和图片数量
def _process_dir(self, dir_path, relabel=False):
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))# 获取.jpg类型的文件
pattern = re.compile(r'([-\d]+)_c(\d)')#
pid_container = set() # 存取训练集中的id,set()有去重功能
for img_path in img_paths:
pid, _ = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
pid_container.add(pid)
pid2label = {pid: label for label, pid in enumerate(pid_container)} # id重排,成为映射关系{...:...,1500:750}
dataset = []
for img_path in img_paths:
pid, camid = map(int, pattern.search(img_path).groups())
if pid == -1: continue # junk images are just ignored
assert 0 <= pid <= 1501 # pid == 0 means background # 判断pid是否在该范围内
assert 1 <= camid <= 6
camid -= 1 # index starts from 0,归化到[0,5]
if relabel:
pid = pid2label[pid]
dataset.append((img_path, pid, camid))
return dataset
(IDM-main/idm/utils/data/base_dataset.py)
class BaseDataset(object):
"""
Base class of reid dataset
"""
def get_imagedata_info(self, data):
pids, cams = [], []
for _, pid, camid in data:
pids += [pid]
cams += [camid]
pids = set(pids)
cams = set(cams)
num_pids = len(pids)
num_cams = len(cams)
num_imgs = len(data)
return num_pids, num_imgs, num_cams
def print_dataset_statistics(self):
raise NotImplementedError
@property
def images_dir(self):
return None
class BaseImageDataset(BaseDataset):
"""
Base class of image reid dataset
"""
def print_dataset_statistics(self, train, query, gallery):
num_train_pids, num_train_imgs, num_train_cams = self.get_imagedata_info(train)
num_query_pids, num_query_imgs, num_query_cams = self.get_imagedata_info(query)
num_gallery_pids, num_gallery_imgs, num_gallery_cams = self.get_imagedata_info(gallery)
print("Dataset statistics:")
print(" ----------------------------------------")
print(" subset | # ids | # images | # cameras")
print(" ----------------------------------------")
print(" train | {:5d} | {:8d} | {:9d}".format(num_train_pids, num_train_imgs, num_train_cams))
print(" query | {:5d} | {:8d} | {:9d}".format(num_query_pids, num_query_imgs, num_query_cams))
print(" gallery | {:5d} | {:8d} | {:9d}".format(num_gallery_pids, num_gallery_imgs, num_gallery_cams))
print(" ----------------------------------------")
(IDM-main/idm/utils/data/preprocessor.py)
from __future__ import absolute_import
import os.path as osp
from torch.utils.data import DataLoader, Dataset
from PIL import Image
# 重构Dataset
class Preprocessor(Dataset):
def __init__(self, dataset, root=None, transform=None):
super(Preprocessor, self).__init__()
self.dataset = dataset
self.root = root
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, indices):
return self._get_single_item(indices)
def _get_single_item(self, index):
fname, pid, camid = self.dataset[index] # index:0-图片数
fpath = fname
if self.root is not None:
fpath = osp.join(self.root, fname)
img = Image.open(fpath).convert('RGB') # 读取图片并转换为RGB
if self.transform is not None:
img = self.transform(img)
return img, fname, pid, camid, index
(IDM-main/idm/utils/data/transforms.py)
from __future__ import absolute_import
from PIL import Image
import random
import math
class RectScale(object):
def __init__(self, height, width, interpolation=Image.BILINEAR):
self.height = height
self.width = width
self.interpolation = interpolation
def __call__(self, img):
w, h = img.size
if h == self.height and w == self.width:
return img
return img.resize((self.width, self.height), self.interpolation)
# 随机裁剪图像大小和纵横比
class RandomSizedRectCrop(object):
def __init__(self, height, width, interpolation=Image.BILINEAR):
self.height = height
self.width = width
self.interpolation = interpolation
def __call__(self, img):
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.64, 1.0) * area # crop后图像的面积范围
aspect_ratio = random.uniform(2, 3) # 长宽比范围
# crop图像的长宽
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size[0] and h <= img.size[1]:
# 随机生成crop时的中心点横纵坐标
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h)) # 先crop
assert(img.size == (w, h))
return img.resize((self.width, self.height), self.interpolation) # 再resize到指定的尺寸
# Fallback
scale = RectScale(self.height, self.width,
interpolation=self.interpolation)
return scale(img)
# 随即擦除:随机选取一个图片的矩形区域,将这个矩形区域的像素值用随机值或者平均像素值代替,产生局部遮挡的效果
class RandomErasing(object):
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
probability: The probability that the Random Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
mean: Erasing value.
"""
# probability:执行随机擦除的概率,默认是0.5;
def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=(0.4914, 0.4822, 0.4465)):
self.probability = probability
self.mean = mean # 擦除的块中填充的数值,默认是ImageNet的像素归一化均值[0.4914, 0.4822, 0.4465]
self.sl = sl # 最小的擦除面积,这里是相对原图的面积比例,默认是0.02
self.sh = sh # 最大的擦除面积,默认是0.4
self.r1 = r1 # 最小的长宽比,实际长宽比是[0.3,1/0.3]之间的随机值
def __call__(self, img):
if random.uniform(0, 1) >= self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area # 面积范围[sl,sh]*area=[0.02*area,0.4*area]
aspect_ratio = random.uniform(self.r1, 1 / self.r1) # 长宽比范围[r1,1/r1]=[0.3,3.333...]
h = int(round(math.sqrt(target_area * aspect_ratio))) # 擦除区域高度
w = int(round(math.sqrt(target_area / aspect_ratio))) # 擦除区域宽度
if w < img.size()[2] and h < img.size()[1]:
x1 = random.randint(0, img.size()[1] - h) # 随机起始点纵坐标
y1 = random.randint(0, img.size()[2] - w) # 随机起始点横坐标
if img.size()[0] == 3: # RGB图
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0] # 将擦除的区域全部赋予预设的填充数值
img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
else: # 灰度图
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
return img
return img