NNDL 实验三 线性回归

目录

2.2 线性回归

2.2.1 数据集构建

2.2.2 模型构建

​2.2.3 损失函数

2.2.4 模型优化

2.2.5 模型训练

2.2.6 模型评估 

2.2.7 样本数量 & 正则化系数

2.3 多项式回归

2.3.1 数据集构建

2.3.2 模型构建

2.3.3 模型训练

2.3.4 模型评估

2.4 Runner类介绍

2.5 基于线性回归的波士顿房价预测

2.5.1 数据处理

2.5.1.1 数据集介绍

​2.5.1.2 数据清洗 

2.5.1.3 数据集划分

2.5.1.4 特征工程

2.5.2 模型构建

2.5.3 完善Runner类

2.5.4 模型训练

2.5.5 模型测试

2.5.6 模型预测

记录一下:


2.2 线性回归

2.2.1 数据集构建

构造一个小的回归数据集:

生成 150 个带噪音的样本,其中 100 个训练样本,50 个测试样本,并打印出训练数据的可视化分布。

假设输入特征和输出标签的维度都为 1,需要被拟合的函数定义为:

# 真实函数的参数缺省值为 w=1.2,b=0.5
def linear_func(x,w=1.2,b=0.5):
    y = w*x + b
    return y

使用torch.rand()函数来进行随机采样输入特征xxx,并代入上面函数得到输出标签y。生成样本数据的函数create_toy_data实现如下

import torch
def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
    '''
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    '''
    # 均匀采样
    # 使用torch.rand在生成sample_num个随机数
    X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
    y = func(X)
    # 生成高斯分布的标签噪声
    # 使用torch.normal生成0均值,noise标准差的数据
    epsilon = torch.normal(0,noise,y.shape)
    y = y + epsilon
    if add_outlier:     # 生成额外的异常点
        outlier_num = int(len(y)*outlier_ratio)
        if outlier_num != 0:
            # 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = torch.randint(len(y),size = [outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y

利用上面的生成样本函数,生成 150 个带噪音的样本,其中 100 个训练样本,50 个测试样本,并打印出训练数据的可视化分布。

from matplotlib import pyplot as plt # matplotlib 是 Python 的绘图库
 
func = linear_func
interval = (-10,10)
train_num = 100 # 训练样本数目
test_num = 50 # 测试样本数目
noise = 2
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise, add_outlier = False)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise, add_outlier = False)
 
X_train_large, y_train_large = create_toy_data(func=func, interval=interval, sample_num=5000, noise = noise, add_outlier = False)
 
# torch.linspace返回一个Tensor,Tensor的值为在区间start和stop上均匀间隔的num个值,输出Tensor的长度为num
X_underlying = torch.linspace(interval[0],interval[1],train_num)
y_underlying = linear_func(X_underlying)
 
# 绘制数据
plt.scatter(X_train, y_train, marker='*', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, marker='h',facecolor="none", edgecolor='#00FF7F', s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"underlying distribution")
plt.legend(fontsize='x-large') # 给图像加图例
plt.savefig('ml-vis.pdf') # 保存图像到PDF文件中
plt.show()

 NNDL 实验三 线性回归_第1张图片

题外话:

飞桨中的源代码很好看,颜色好看,图案也好看。第一次知道绘图的时候除了用圆圈标记,还能用小星星,是我孤陋寡闻了。去查了查,才发现Matplotlib库里有很多功能,不愧是Python 最著名的绘图库。

2.2.2 模型构建

import torch

torch.seed()  # 设置随机种子
class Op(object):     #代码来自nndl.op
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError
# 线性算子
class Linear(Op):
    def __init__(self, input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """

        self.input_size = input_size

        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(size=[self.input_size, 1], dtype=torch.float32)
        self.params['b'] = torch.zeros(size=[1], dtype=torch.float32)

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
            - X: tensor, shape=[N,D]
            注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
            - y_pred: tensor, shape=[N]
        """

        N, D = X.shape
        
        if self.input_size == 0:
            return torch.full(shape=[N, 1], fill_value=self.params['b'])

        assert D == self.input_size  # 输入数据维度合法性验证

        # 使用torch.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X, self.params['w']) + self.params['b']
        return y_pred

# 注意这里我们为了和后面章节统一,这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
input_size = 3
N = 2
X = torch.randn(N,input_size)  # 生成2个维度为3的数据
model = Linear(input_size)
y_pred = model(X)
print("y_pred:", y_pred)  # 输出结果的个数也是2个

NNDL 实验三 线性回归_第2张图片
2.2.3 损失函数

回归任务中常用的评估指标是均方误差

均方误差(mean-square error, MSE)是反映估计量与被估计量之间差异程度的一种度量。

import torch

def mean_squared_error(y_true, y_pred):
    """
    输入:
       - y_true: tensor,样本真实标签
       - y_pred: tensor, 样本预测标签
    输出:
       - error: float,误差值
    """
    assert y_true.shape[0] == y_pred.shape[0]
    # torch.square计算输入的平方值
    # torch.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
    error = torch.mean(torch.square(y_true - y_pred))
    return error

# 构造一个简单的样例进行测试:[N,1], N=2
y_true = torch.tensor([[-0.2], [4.9]], dtype=torch.float32)
y_pred = torch.tensor([[1.3], [2.5]], dtype=torch.float32)
error = mean_squared_error(y_true=y_true, y_pred=y_pred).item()
print("error:", error)

 

【注意:代码实现中没有除2】思考:没有除2合理么?谈谈自己的看法,写到实验报告。

答:合理。公式中有除以二,代码中没有并不影响最后的结果。在计算过程中有求偏导这一步,除以2是为了方便计算。

2.2.4 模型优化

经验风险 ( Empirical Risk ),即在训练集上的平均损失。

def optimizer_lsm(model, X, y, reg_lambda=0):
    '''
      输入:
         - model: 模型
         - X: tensor, 特征数据,shape=[N,D]
         - y: tensor,标签数据,shape=[N]
         - reg_lambda: float, 正则化系数,默认为0
      输出:
         - model: 优化好的模型
      '''
    N, D = X.shape
    # 对输入特征数据所有特征向量求平均
    x_bar_tran = torch.mean(X,0).T
    # 求标签的均值,shape=[1]
    y_bar = torch.mean(y)
    # torch.subtract通过广播的方式实现矩阵减向量
    x_sub = torch.subtract(X, x_bar_tran)
    # 使用torch.all判断输入tensor是否全0
    if torch.all(x_sub == 0):
        model.params['b'] = y_bar
        model.params['w'] = torch.zeros([D])
        return model

    # torch.inverse求方阵的逆
    tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) +
                         reg_lambda * torch.eye(D))
    w = torch.matmul(torch.matmul(tmp, x_sub.T), (y - y_bar))
    b = y_bar - torch.matmul(x_bar_tran, w)
    model.params['b'] = b
    model.params['w'] = torch.squeeze(w, -1)
    return model

思考1. 为什么省略了不影响效果?

答:\frac{1}{N}是一个常数,省略常数并不会影响效果。

思考 2.  什么是最小二乘法 ( Least Square Method , LSM )

答:

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差(真实目标对象与拟合目标对象的差)的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

  •     最小二乘法还可用于曲线拟合。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。
  •     选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小

    最小二乘法也是一种优化方法,求得目标函数的最优值。并且也可以用于曲线拟合,来解决回归问题。回归学习最常用的损失函数是平方损失函数,在此情况下,回归问题可以著名的最小二乘法来解决。

简而言之,最小二乘法同梯度下降类似,都是一种求解无约束最优化问题的常用方法,并且也可以用于曲线拟合,来解决回归问题。
————————————————
原文链接:https://blog.csdn.net/W1995S/article/details/118153146

2.2.5 模型训练

在准备了数据、模型、损失函数和参数学习的实现之后,开始模型的训练。

在回归任务中,模型的评价指标和损失函数一致,都为均方误差。

通过上文实现的线性回归类来拟合训练数据,并输出模型在训练集上的损失。

input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:", model.params['w'].item(), "b_pred: ", model.params['b'].item())
y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print("train error: ", train_error)

model_large = Linear(input_size)
model_large = optimizer_lsm(model_large,X_train_large.reshape([-1,1]),y_train_large.reshape([-1,1]))
print("w_pred large:",model_large.params['w'].item(), "b_pred large: ", model_large.params['b'].item())
y_train_pred_large = model_large(X_train_large.reshape([-1,1])).squeeze()
train_error_large = mean_squared_error(y_true=y_train_large, y_pred=y_train_pred_large).item()
print("train error large: ",train_error_large)

从输出结果看,预测结果与真实值w=1.2,b=0.5有一定的差距。

2.2.6 模型评估 

用训练好的模型预测一下测试集的标签,并计算在测试集上的损失。

y_test_pred = model(X_test.reshape([-1,1])).squeeze()
test_error = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
print("test error: ",test_error)
y_test_pred_large = model_large(X_test.reshape([-1,1])).squeeze()
test_error_large = mean_squared_error(y_true=y_test, y_pred=y_test_pred_large).item()
print("test error large: ",test_error_large)

NNDL 实验三 线性回归_第3张图片

 

2.2.7 样本数量 & 正则化系数

(1) 调整训练数据的样本数量,由 100 调整到 5000,观察对模型性能的影响。

NNDL 实验三 线性回归_第4张图片

(2) 调整正则化系数,观察对模型性能的影响。

2.3 多项式回归

2.3.1 数据集构建

构建训练和测试数据,其中:

训练数样本 15 个,测试样本 10 个,高斯噪声标准差为 0.1,自变量范围为 (0,1)。

假设要拟合的非线性函数为一个缩放后的sin函数。

import torch
import math
# sin函数: sin(2 * pi * x)
def sin(x):
    y = torch.sin(2 * math.pi * x)
    return y

这里仍然使用前面定义的create_toy_data函数来构建训练和测试数据,其中训练数样本 15 个,测试样本 10 个,高斯噪声标准差为 0.1,自变量范围为 (0,1)。

from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
def create_toy_data(func, interval, sample_num, noise=0.0, add_outlier=False, outlier_ratio=0.001):
    """
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    """

    # 均匀采样
    # 使用torch.rand在生成sample_num个随机数
    X = torch.rand(size=[sample_num]) * (interval[1] - interval[0]) + interval[0]
    y = func(X)
    # 生成高斯分布的标签噪声
    # 使用torch.normal生成0均值,noise标准差的数据
    epsilon = torch.normal(0, noise, y.shape)
    y = y + epsilon
    if add_outlier:  # 生成额外的异常点
        outlier_num = int(len(y) * outlier_ratio)
        if outlier_num != 0:
            # 使用paddle.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = torch.randint(len(y), size=[outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y


# 生成数据
func = sin
interval = (0, 1)
train_num = 15
test_num = 10
noise = 0.5  # 0.1
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise=noise)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise=noise)
X_underlying = torch.linspace(interval[0], interval[1], 100)
y_underlying = sin(X_underlying)
# 绘制图像
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.scatter(X_train, y_train,marker='v', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test,marker='P', facecolor="none", edgecolor="b", s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.legend(fontsize='x-large')
plt.savefig('ml-vis2.pdf')
plt.show()

NNDL 实验三 线性回归_第5张图片

2.3.2 模型构建

套用求解线性回归参数的方法来求解多项式回归参数。

# 多项式转换
def polynomial_basis_function(x, degree=2):
    """
    输入:
       - x: tensor, 输入的数据,shape=[N,1]
       - degree: int, 多项式的阶数
       example Input: [[2], [3], [4]], degree=2
       example Output: [[2^1, 2^2], [3^1, 3^2], [4^1, 4^2]]
       注意:本案例中,在degree>=1时不生成全为1的一列数据;degree为0时生成形状与输入相同,全1的Tensor
    输出:
       - x_result: tensor
    """
    if degree == 0:
        # x = torch.ones(x.shape)
        # x = x.to(torch.float32)
        # return x
        return torch.ones(x.shape)
    x_tmp = x
    x_result = x_tmp
    for i in range(2, degree + 1):
        x_tmp = torch.multiply(x_tmp, x)  # 逐元素相乘
        x_result = torch.concat((x_result, x_tmp), dim=-1)
    return x_result

# 简单测试
data = [[2], [3], [4]]
X = torch.tensor(data=data)
X = X.to(torch.float32)
degree = 3
transformed_X = polynomial_basis_function(X, degree=degree)
print("转换前:", X)
print("阶数为", degree, "转换后:", transformed_X)

NNDL 实验三 线性回归_第6张图片 

 

2.3.3 模型训练

对于多项式回归,我们可以同样使用前面线性回归中定义的LinearRegression算子、训练函数train、均方误差函数mean_squared_error。

plt.rcParams['figure.figsize'] = (12.0, 8.0)

for i, degree in enumerate([0, 1, 3, 8]):  # []中为多项式的阶数
    model = Linear(degree)
    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), degree)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), degree)
    model = optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))  # 拟合得到参数
    y_underlying_pred = model(X_underlying_transformed).squeeze()
    print(model.params)

    # 绘制图像
    plt.subplot(2, 2, i + 1)
    plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
    plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
    plt.plot(X_underlying, y_underlying_pred, c='#f19ec2', label="predicted function")
    plt.ylim(-2, 1.5)
    plt.annotate("M={}".format(degree), xy=(0.95, -1.4))

# plt.legend(bbox_to_anchor=(1.05, 0.64), loc=2, borderaxespad=0.)
plt.legend(loc='lower left', fontsize='x-large')
plt.savefig('ml-vis3.pdf')
plt.show()

 NNDL 实验三 线性回归_第7张图片

NNDL 实验三 线性回归_第8张图片

 

观察可视化结果,红色的曲线表示不同阶多项式分布拟合数据的结果:

  • 当 M=0M=0M=0 或 M=1M=1M=1 时,拟合曲线较简单,模型欠拟合;
  • 当 M=8M=8M=8 时,拟合曲线较复杂,模型过拟合;
  • 当 M=3M=3M=3 时,模型拟合最为合理。

2.3.4 模型评估

通过均方误差来衡量训练误差、测试误差以及在没有噪音的加入下sin函数值与多项式回归值之间的误差,更加真实地反映拟合结果。多项式分布阶数从0到8进行遍历。

对于模型过拟合的情况,可以引入正则化方法,通过向误差函数中添加一个惩罚项来避免系数倾向于较大的取值。

# 训练误差和测试误差
training_errors = []
test_errors = []
distribution_errors = []

# 遍历多项式阶数
for i in range(9):
    model = Linear(i)

    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), i)
    X_test_transformed = polynomial_basis_function(X_test.reshape([-1, 1]), i)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), i)

    optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))

    y_train_pred = model(X_train_transformed).squeeze()
    y_test_pred = model(X_test_transformed).squeeze()
    y_underlying_pred = model(X_underlying_transformed).squeeze()

    train_mse = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
    training_errors.append(train_mse)

    test_mse = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
    test_errors.append(test_mse)

    # distribution_mse = mean_squared_error(y_true=y_underlying, y_pred=y_underlying_pred).item()
    # distribution_errors.append(distribution_mse)

print("train errors: \n", training_errors)
print("test errors: \n", test_errors)
# print ("distribution errors: \n", distribution_errors)

# 绘制图片
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.plot(training_errors, '-.', mfc="none", mec='#e4007f', ms=10, c='#e4007f', label="Training")
plt.plot(test_errors, '--', mfc="none", mec='#f19ec2', ms=10, c='#f19ec2', label="Test")
# plt.plot(distribution_errors, '-', mfc="none", mec="#3D3D3F", ms=10, c="#3D3D3F", label="Distribution")
plt.legend(fontsize='x-large')
plt.xlabel("degree")
plt.ylabel("MSE")
plt.savefig('ml-mse-error.pdf')
plt.show()

NNDL 实验三 线性回归_第9张图片

train errors: 
 [0.7006273865699768, 0.459964781999588, 0.37801748514175415, 0.18488360941410065, 0.1794089674949646, 0.17847533524036407, 0.23975566029548645, 0.26745325326919556, 2.901869535446167]
test errors: 
 [1.2100856304168701, 0.5253490805625916, 0.4387543797492981, 0.2201036661863327, 0.22330334782600403, 0.2164992392063141, 0.2250174731016159, 0.4922424852848053, 2.102128505706787]

观察可视化结果:

  • 当阶数较低的时候,模型的表示能力有限,训练误差和测试误差都很高,代表模型欠拟合;
  • 当阶数较高的时候,模型表示能力强,但将训练数据中的噪声也作为特征进行学习,一般情况下训练误差继续降低而测试误差显著升高,代表模型过拟合。

 对于模型过拟合的情况,可以引入正则化方法,通过向误差函数中添加一个惩罚项来避免系数倾向于较大的取值。下面加入l_{2}​正则化项,查看拟合结果。

degree = 8 # 多项式阶数
reg_lambda = 0.0001 # 正则化系数
X_train_transformed = polynomial_basis_function(X_train.reshape([-1,1]), degree)
X_test_transformed = polynomial_basis_function(X_test.reshape([-1,1]), degree)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1,1]), degree)
model = Linear(degree)

optimizer_lsm(model,X_train_transformed,y_train.reshape([-1,1]))
y_test_pred=model(X_test_transformed).squeeze()
y_underlying_pred=model(X_underlying_transformed).squeeze()
model_reg = Linear(degree)

optimizer_lsm(model_reg,X_train_transformed,y_train.reshape([-1,1]),reg_lambda=reg_lambda)
y_test_pred_reg=model_reg(X_test_transformed).squeeze()
y_underlying_pred_reg=model_reg(X_underlying_transformed).squeeze()
mse = mean_squared_error(y_true = y_test, y_pred = y_test_pred).item()
print("mse:",mse)

mes_reg = mean_squared_error(y_true = y_test, y_pred = y_test_pred_reg).item()
print("mse_with_l2_reg:",mes_reg)
# 绘制图像
plt.scatter(X_train, y_train, facecolor="none", edgecolor="#e4007f", s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.plot(X_underlying, y_underlying_pred, c='#e4007f', linestyle="--", label="$deg. = 8$")
plt.plot(X_underlying, y_underlying_pred_reg, c='#f19ec2', linestyle="-.", label="$deg. = 8, \ell_2 reg$")
plt.ylim(-1.5, 1.5)
plt.annotate("lambda={}".format(reg_lambda), xy=(0.82, -1.4))
plt.legend(fontsize='large')
plt.savefig('ml-vis4.pdf')
plt.show()

NNDL 实验三 线性回归_第10张图片 NNDL 实验三 线性回归_第11张图片

2.4 Runner类介绍

机器学习方法流程包括数据集构建、模型构建、损失函数定义、优化器、模型训练、模型评价、模型预测等环节。

为了更方便地将上述环节规范化,我们将机器学习模型的基本要素封装成一个Runner类。

除上述提到的要素外,再加上模型保存、模型加载等功能。

Runner类的成员函数定义如下:

 __init__函数:实例化Runner类,需要传入模型、损失函数、优化器和评价指标等;
train函数:模型训练,指定模型训练需要的训练集和验证集;
evaluate函数:通过对训练好的模型进行评价,在验证集或测试集上查看模型训练效果;
predict函数:选取一条数据对训练好的模型进行预测;
save_model函数:模型在训练过程和训练结束后需要进行保存;
load_model函数:调用加载之前保存的模型。

class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        self.model = model         # 模型
        self.optimizer = optimizer # 优化器
        self.loss_fn = loss_fn     # 损失函数   
        self.metric = metric       # 评估指标
 
    # 模型训练
    def train(self, train_dataset, dev_dataset=None, **kwargs):
        pass
 
    # 模型评价
    def evaluate(self, data_set, **kwargs):
        pass
 
    # 模型预测
    def predict(self, x, **kwargs):
        pass
 
    # 模型保存
    def save_model(self, save_path):
        pass
 
    # 模型加载
    def load_model(self, model_path):
        pass


2.5 基于线性回归的波士顿房价预测

使用线性回归来对马萨诸塞州波士顿郊区的房屋进行预测。

实验流程主要包含如下5个步骤:

数据处理:包括数据清洗(缺失值和异常值处理)、数据集划分,以便数据可以被模型正常读取,并具有良好的泛化性;
模型构建:定义线性回归模型类;
训练配置:训练相关的一些配置,如:优化算法、评价指标等;
组装训练框架Runner:Runner用于管理模型训练和测试过程;
模型训练和测试:利用Runner进行模型训练和测试。

2.5.1 数据处理

2.5.1.1 数据集介绍

●波士顿房价预测数据集
●506条样本数据,12种可能影响房价的因素和该类房屋价格中位数

import torch
import pandas as pd # 开源数据分析和操作工具
 
# 利用pandas加载波士顿房价的数据集
data=pd.read_csv("boston_house_prices.csv")
# 预览前5行数据
print(data.head())

NNDL 实验三 线性回归_第12张图片
2.5.1.2 数据清洗 

●缺失值分析
●异常值处理

通过isna()方法判断数据中各元素是否缺失,然后通过sum()方法统计每个字段缺失情况,代码实现如下:

# 查看各字段缺失值统计情况 
print(data.isna().sum())

NNDL 实验三 线性回归_第13张图片 

从输出结果看,波士顿房价预测数据集中不存在缺失值的情况。

通过箱线图显示数据分布:

from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
# 箱线图查看异常值分布
def boxplot(data, fig_name):
    # 绘制每个属性的箱线图
    data_col = list(data.columns)

    # 连续画几个图片
    plt.figure(figsize=(5, 5), dpi=300)
    # 子图调整
    plt.subplots_adjust(wspace=0.6)
    # 每个特征画一个箱线图
    for i, col_name in enumerate(data_col):
        plt.subplot(3, 5, i + 1)
        # 画箱线图
        plt.boxplot(data[col_name],
                    showmeans=True,
                    meanprops={"markersize": 1, "marker": "D", "markeredgecolor": '#f19ec2'},  # 均值的属性
                    medianprops={"color": '#e4007f'},  # 中位数线的属性
                    whiskerprops={"color": '#e4007f', "linewidth": 0.4, 'linestyle': "--"},
                    flierprops={"markersize": 0.4},
                    )
        # 图名
        plt.title(col_name, fontdict={"size": 5}, pad=2)
        # y方向刻度
        plt.yticks(fontsize=4, rotation=90)
        plt.tick_params(pad=0.5)
        # x方向刻度
        plt.xticks([])
    plt.savefig('ml-vis5.pdf')
    plt.show()

boxplot(data,'ml-vis5.pdf')

NNDL 实验三 线性回归_第14张图片 NNDL 实验三 线性回归_第15张图片

使用四分位值筛选出箱线图中分布的异常值,并将这些数据视为噪声,其将被临界值取代 

最大估计值 = 上四分位 + 1.5 ∗ (上四分位 − 下四分位)
最小估计值 = 下四分位 − 1.5 ∗ (上四分位 − 下四分位)

# 四分位处理异常值
num_features=data.select_dtypes(exclude=['object','bool']).columns.tolist()

for feature in num_features:
    if feature =='CHAS':
        continue
    
    Q1  = data[feature].quantile(q=0.25) # 下四分位
    Q3  = data[feature].quantile(q=0.75) # 上四分位
    
    IQR = Q3-Q1 
    top = Q3+1.5*IQR # 最大估计值
    bot = Q1-1.5*IQR # 最小估计值
    values=data[feature].values
    values[values > top] = top # 临界值取代噪声
    values[values < bot] = bot # 临界值取代噪声
    data[feature] = values.astype(data[feature].dtypes)

# 再次查看箱线图,异常值已被临界值替换(数据量较多或本身异常值较少时,箱线图展示会不容易体现出来)
boxplot(data, 'ml-vis6.pdf')

NNDL 实验三 线性回归_第16张图片 

 对比图

NNDL 实验三 线性回归_第17张图片

题外话:有点像找不同:)

2.5.1.3 数据集划分

●训练集和测试集

import torch

torch.seed()
 
# 划分训练集和测试集
def train_test_split(X, y, train_percent=0.8):
    n = len(X)
    shuffled_indices = torch.randperm(n)  # 返回一个数值在0到n-1、随机排列的1-D Tensor
    train_set_size = int(n * train_percent)
    train_indices = shuffled_indices[:train_set_size]
    test_indices = shuffled_indices[train_set_size:]
 
    X = X.values
    y = y.values
 
    X_train = X[train_indices]
    y_train = y[train_indices]
 
    X_test = X[test_indices]
    y_test = y[test_indices]
 
    return X_train, X_test, y_train, y_test
 
 
X = data.drop(['MEDV'], axis=1) #MEDV代表房价
y = data['MEDV']
 
X_train, X_test, y_train, y_test = train_test_split(X, y)  # X_train每一行是个样本,shape[N,D]

2.5.1.4 特征工程

●消除量纲对特征的影响,对数据特征进行归一化处理,缩放到[0,1]

X_train = torch.tensor(X_train,dtype=torch.float32)
X_test = torch.tensor(X_test,dtype=torch.float32)
y_train = torch.tensor(y_train,dtype=torch.float32)
y_test = torch.tensor(y_test,dtype=torch.float32)
 
X_min = torch.min(X_train)
X_max = torch.max(X_train)

X_train = (X_train-X_min)/(X_max-X_min)
 
X_test  = (X_test-X_min)/(X_max-X_min)

# 训练集构造
train_dataset=(X_train,y_train)
# 测试集构造
test_dataset=(X_test,y_test)

2.5.2 模型构建

torch.seed()  # 设置随机种子

# 线性回归模型,基于最小二乘法实现
class Linear(object):
    def __init__(self, input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """

        self.input_size = input_size

        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(size=[self.input_size, 1], dtype=torch.float32)
        self.params['b'] = torch.zeros(size=[1], dtype=torch.float32)

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
            - X: tensor, shape=[N,D]
            注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
            - y_pred: tensor, shape=[N]
        """

        N, D = X.shape

        if self.input_size == 0:
            return torch.full(shape=[N, 1], fill_value=self.params['b'])

        assert D == self.input_size  # 输入数据维度合法性验证

        # 使用torch.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X, self.params['w']) + self.params['b']
        return y_pred

实例化一个线性回归模型,特征维度为 12:

# 模型实例化
input_size = 12
model=Linear(input_size)

2.5.3 完善Runner类

模型定义好后,围绕模型需要配置损失函数、优化器、评估、测试等信息,以及模型相关的一些其他信息(如模型存储路径等)。

在本章中使用的Runner类为V1版本。其中训练过程通过直接求解解析解的方式得到模型参数,没有模型优化及计算损失函数过程,模型训练结束后保存模型参数。

训练配置中定义:

  • 训练环境,如GPU还是CPU,本案例不涉及;
  • 优化器,本案例不涉及;
  • 损失函数,本案例通过平方损失函数得到模型参数的解析解;
  • 评估指标,本案例利用MSE评估模型效果。

在测试集上使用MSE对模型性能进行评估。

import torch.nn as nn
mse_loss = nn.MSELoss()

 具体实现如下:

import os
from nndl.opitimizer import optimizer_lsm

class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        # 优化器和损失函数为None,不再关注
        # 模型
        self.model = model
        # 评估指标
        self.metric = metric
        # 优化器
        self.optimizer = optimizer

    def train(self, dataset, reg_lambda, model_dir):
        X, y = dataset
        self.optimizer(self.model, X, y, reg_lambda)

        # 保存模型
        self.save_model(model_dir)

    def evaluate(self, dataset, **kwargs):
        X, y = dataset

        y_pred = self.model(X)
        result = self.metric(y_pred, y)

        return result

    def predict(self, X, **kwargs):
        return self.model(X)

    def save_model(self, model_dir):
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        torch.save(model.params, params_saved_path)

    def load_model(self, model_dir):
        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        self.model.params = torch.load(params_saved_path)

optimizer = optimizer_lsm
# 实例化Runner
runner = Runner(model, optimizer=optimizer, loss_fn=None, metric=mse_loss)

2.5.4 模型训练

在组装完成Runner之后,我们将开始进行模型训练、评估和测试。首先,我们先实例化Runner,然后开始进行装配训练环境,接下来就可以开始训练,代码如下:

# 模型保存到文件夹中
saved_dir = 'pythonPoject5'
# 启动训练
runner.train(train_dataset, reg_lambda=0, model_dir=saved_dir)

打印出训练得到的权重:

columns_list = data.columns.to_list()
weights = runner.model.params['w'].tolist()
b = runner.model.params['b'].item()
 
for i in range(len(weights)):
    print(columns_list[i],"weight:",weights[i])
 
print("b:",b)

NNDL 实验三 线性回归_第18张图片 

从输出结果看,CRIM、PTRATIO等的权重为负数,表示人均犯罪率与房价呈负相关,学生与教师比例越大,房价越低。

2.5.5 模型测试

加载训练好的模型参数,在测试集上得到模型的MSE指标。

# 加载模型权重
runner.load_model(saved_dir)

mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())

 

2.5.6 模型预测

使用Runner中load_model函数加载保存好的模型,使用predict进行模型预测,代码如下:

runner.load_model(saved_dir)
pred = runner.predict(X_test[:1])
print("真实房价:",y_test[:1].item())
print("预测的房价:",pred.item())

 NNDL 实验三 线性回归_第19张图片

问题1:使用类实现机器学习模型的基本要素有什么优点?

答:简单好用,易于理解,容易实现,无需估计参数,无需训练,准确度高,既可以用来做分类也可以用来做回归,用起来很方便。

问题2:算子op、优化器opitimizer放在单独的文件中,主程序在使用时调用该文件。这样做有什么优点?

答:调用起来很方便,快捷简单,可以简化主程序,使主程序看起来更舒服。

问题3:线性回归通常使用平方损失函数,能否使用交叉熵损失函数?为什么?
答:从平方损失函数运用到多分类场景下,可知平方损失函数对每一个输出结果都十分看重,而交叉熵损失函数只对正确分类的结果看重。交叉熵损失函数只和分类正确的预测结果有关。而平方损失函数还和错误的分类有关,该损失函数除了让正确分类尽量变大,还会让错误分类都变得更加平均,但实际中后面的这个调整使没必要的。但是对于回归问题这样的考虑就显得重要了,因而回归问题上使用交叉熵并不适合。

 http://t.csdn.cn/9dZbm icon-default.png?t=M85Bhttp://t.csdn.cn/9dZbm

(这篇文章写的很详细)

记录一下:

本次实验是以飞桨中的内容为模板,使用pytorch实现的。飞桨中写的很完整很详细,很系统,一步步引导着我们学习,是非常好的学习资料了。

而在写实验报告的过程中,老师也留下了一些问题,通过这些问题引导我们进行思考,带着问题去学习,能更好的理解,印象也会更深刻。

本次实验对自己来说还是有难度的,需要继续努力,多花些时间去学习理解并掌握。

参考内容&代码来源:飞桨;

http://t.csdn.cn/UJ8r4icon-default.png?t=M85Bhttp://t.csdn.cn/UJ8r4

你可能感兴趣的:(线性回归,机器学习,深度学习)