python变长数组_tensorflow 变长序列存储实例

问题

问题是这样的,要把一个数组存到tfrecord中,然后读取

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196],

[0, 38, 79, 157],

[0, 49, 89, 147, 177],

[0, 32, 73, 145]])

图片我都存储了,这个不还是小意思,一顿操作

import tensorflow as tf

import numpy as np

def _int64_feature(value):

if not isinstance(value,list):

value = [value]

return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

# Write an array to TFrecord.

# a is an array which contains lists of variant length.

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196],

[0, 38, 79, 157],

[0, 49, 89, 147, 177],

[0, 32, 73, 145]])

writer = tf.python_io.TFRecordWriter('file')

for i in range(a.shape[0]):

feature = {'i' : _int64_feature(i),

'data': _int64_feature(a[i])}

# Create an example protocol buffer

example = tf.train.Example(features=tf.train.Features(feature=feature))

# Serialize to string and write on the file

writer.write(example.SerializeToString())

writer.close()

# Use Dataset API to read the TFRecord file.

filenames = ["file"]

dataset = tf.data.TFRecordDataset(filenames)

def _parse_function(example_proto):

keys_to_features = {'i':tf.FixedLenFeature([],tf.int64),

'data':tf.FixedLenFeature([],tf.int64)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

return parsed_features['i'], parsed_features['data']

dataset = dataset.map(_parse_function)

dataset = dataset.shuffle(buffer_size=1)

dataset = dataset.repeat()

dataset = dataset.batch(1)

iterator = dataset.make_one_shot_iterator()

i, data = iterator.get_next()

with tf.Session() as sess:

print(sess.run([i, data]))

print(sess.run([i, data]))

print(sess.run([i, data]))

报了奇怪的错误,Name: , Key: data, Index: 0. Number of int64 values != expected. Values size: 6 but output shape: [] 这意思是我数据长度为6,但是读出来的是[],这到底是哪里错了,我先把读取的代码注释掉,看看tfreocrd有没有写成功,发现写成功了,这就表明是读取的问题,我怀疑是因为每次写入的长度是变化的原因,但是又有觉得不是,因为图片的尺寸都是不同的,我还是可以读取的,百思不得其解的时候我发现存储图片的时候是img.tobytes(),我把一个数组转换成了bytes,而且用的也是bytes存储,是不是tensorflow会把这个bytes当成一个元素,虽然每个图片的size不同,但是tobytes后tensorflow都会当成一个元素,然后读取的时候再根据(height,width,channel)来解析成图片。

我来试试不存为int64,而是存为bytes。 又是一顿厉害的操作

数据转为bytes

# -*- coding: utf-8 -*-

import tensorflow as tf

import numpy as np

def _byte_feature(value):

return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def _int64_feature(value):

if not isinstance(value,list):

value = [value]

return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

# Write an array to TFrecord.

# a is an array which contains lists of variant length.

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196],

[0, 38, 79, 157],

[0, 49, 89, 147, 177],

[0, 32, 73, 145]])

writer = tf.python_io.TFRecordWriter('file')

for i in range(a.shape[0]): # i = 0 ~ 4

feature = {'len' : _int64_feature(len(a[i])), # 将无意义的i改成len,为了后面还原

'data': _byte_feature(np.array(a[i]).tobytes())} # 我也不知道为什么a[i]是list(后面就知道了),要存bytes需要numpy一下

# Create an example protocol buffer

example = tf.train.Example(features=tf.train.Features(feature=feature))

# Serialize to string and write on the file

writer.write(example.SerializeToString())

writer.close()

#

# Use Dataset API to read the TFRecord file.

filenames = ["file"]

dataset = tf.data.TFRecordDataset(filenames)

def _parse_function(example_proto):

keys_to_features = {'len':tf.FixedLenFeature([],tf.int64),

'data':tf.FixedLenFeature([],tf.string)} # 改成string

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

return parsed_features['len'], parsed_features['data']

dataset = dataset.map(_parse_function)

dataset = dataset.shuffle(buffer_size=1)

dataset = dataset.repeat()

dataset = dataset.batch(1)

iterator = dataset.make_one_shot_iterator()

i, data = iterator.get_next()

with tf.Session() as sess:

print(sess.run([i, data]))

print(sess.run([i, data]))

print(sess.run([i, data]))

"""

[array([6], dtype=int64), array([b'\x00\x00\x00\x006\x00\x00\x00[\x00\x00\x00\x99\x00\x00\x00\xb1\x00\x00\x00\x01\x00\x00\x00'],

dtype=object)]

[array([5], dtype=int64), array([b'\x00\x00\x00\x002\x00\x00\x00Y\x00\x00\x00\x93\x00\x00\x00\xc4\x00\x00\x00'],

dtype=object)]

[array([4], dtype=int64), array([b'\x00\x00\x00\x00&\x00\x00\x00O\x00\x00\x00\x9d\x00\x00\x00'],

dtype=object)]

"""

bytes数据解码

如愿的输出来了,但是这个bytes我该如何解码呢

方法一,我们自己解析

a,b= sess.run([i,data])

c = np.frombuffer(b[0],dtype=np.int,count=a[0])

方法二使用tensorflow的解析函数

def _parse_function(example_proto):

keys_to_features = {'len':tf.FixedLenFeature([],tf.int64),

'data':tf.FixedLenFeature([],tf.string)} # 改成string

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

dat = tf.decode_raw(parsed_features['data'],tf.int64) # 用的是这个解析函数,我们使用int64的格式存储的,解析的时候也是转换为int64

return parsed_features['len'], dat

"""

[array([6]), array([[ 0, 54, 91, 153, 177, 1]])]

[array([5]), array([[ 0, 50, 89, 147, 196]])]

[array([4]), array([[ 0, 38, 79, 157]])]

"""

可以看到是二维数组,这是因为我们使用的是batch输出,虽然我们的bathc_size=1,但是还是会以二维list的格式输出。我手贱再来修改点东西,

def _parse_function(example_proto):

keys_to_features = {'len':tf.FixedLenFeature([1],tf.int64),

'data':tf.FixedLenFeature([1],tf.string)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

dat = tf.decode_raw(parsed_features['data'],tf.int64)

return parsed_features['len'], dat

"""

[array([[6]]), array([[[ 0, 54, 91, 153, 177, 1]]])]

[array([[5]]), array([[[ 0, 50, 89, 147, 196]]])]

[array([[4]]), array([[[ 0, 38, 79, 157]]])]

"""

呦呵,又变成3维的了,让他报个错试试

def _parse_function(example_proto):

keys_to_features = {'len':tf.FixedLenFeature([2],tf.int64), # 1 修改为 2

'data':tf.FixedLenFeature([1],tf.string)} # 改成string

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

return parsed_features['len'], parsed_features['data']

"""

InvalidArgumentError: Key: len. Can't parse serialized Example.

[[Node: ParseSingleExample/ParseSingleExample = ParseSingleExample[Tdense=[DT_STRING, DT_INT64], dense_keys=["data", "len"], dense_shapes=[[1], [2]], num_sparse=0, sparse_keys=[], sparse_types=[]](arg0, ParseSingleExample/Const, ParseSingleExample/Const_1)]]

[[Node: IteratorGetNext_22 = IteratorGetNext[output_shapes=[[?,2], [?,1]], output_types=[DT_INT64, DT_STRING], _device="/job:localhost/replica:0/task:0/device:CPU:0"](OneShotIterator_22)]]

"""

可以看到dense_keys=["data", "len"], dense_shapes=[[1], [2]],,tf.FixedLenFeature是读取固定长度的数据,我猜测[]的意思就是读取全部数据,[1]就是读取一个数据,每个数据可能包含多个数据,形如[[1,2],[3,3,4],[2]....],哈哈这都是我瞎猜的,做我女朋友好不好。

tensorflow 变长数组存储

反正是可以读取了。但是如果是自己定义的变长数组,每次都要自己解析,这样很麻烦(我瞎遍的),所以tensorflow就定义了变长数组的解析方法tf.VarLenFeature,我们就不需要把边长数组变为bytes再解析了,又是一顿操作

import tensorflow as tf

import numpy as np

def _int64_feature(value):

if not isinstance(value,list):

value = [value]

return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

# Write an array to TFrecord.

# a is an array which contains lists of variant length.

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196],

[0, 38, 79, 157],

[0, 49, 89, 147, 177],

[0, 32, 73, 145]])

writer = tf.python_io.TFRecordWriter('file')

for i in range(a.shape[0]): # i = 0 ~ 4

feature = {'i' : _int64_feature(i),

'data': _int64_feature(a[i])}

# Create an example protocol buffer

example = tf.train.Example(features=tf.train.Features(feature=feature))

# Serialize to string and write on the file

writer.write(example.SerializeToString())

writer.close()

# Use Dataset API to read the TFRecord file.

filenames = ["file"]

dataset = tf.data.TFRecordDataset(filenames)

def _parse_function(example_proto):

keys_to_features = {'i':tf.FixedLenFeature([],tf.int64),

'data':tf.VarLenFeature(tf.int64)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

return parsed_features['i'], tf.sparse_tensor_to_dense(parsed_features['data'])

dataset = dataset.map(_parse_function)

dataset = dataset.shuffle(buffer_size=1)

dataset = dataset.repeat()

dataset = dataset.batch(1)

iterator = dataset.make_one_shot_iterator()

i, data = iterator.get_next()

with tf.Session() as sess:

print(sess.run([i, data]))

print(sess.run([i, data]))

print(sess.run([i, data]))

"""

[array([0], dtype=int64), array([[ 0, 54, 91, 153, 177, 1]], dtype=int64)]

[array([1], dtype=int64), array([[ 0, 50, 89, 147, 196]], dtype=int64)]

[array([2], dtype=int64), array([[ 0, 38, 79, 157]], dtype=int64)]

"""

batch输出

输出还是数组,哈哈哈。再来一波操作

dataset = dataset.batch(2)

"""

Cannot batch tensors with different shapes in component 1. First element had shape [6] and element 1 had shape [5].

"""

这是因为一个batch中数据的shape必须是一致的,第一个元素长度为6,第二个元素长度为5,就会报错。办法就是补成一样的长度,在这之前先测试点别的

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196],

[0, 38, 79, 157],

[0, 49, 89, 147, 177],

[0, 32, 73, 145]])

for i in range(a.shape[0]):

print(type(a[i]))

"""

"""

可以发现长度不一的array每一个数据是list(一开始我以为是object)。然后补齐

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196,0],

[0, 38, 79, 157,0,0],

[0, 49, 89, 147, 177,0],

[0, 32, 73, 145,0,0]])

for i in range(a.shape[0]):

print(type(a[i]))

"""

"""

返回的是numpy。为什么要做这件事呢?

def _int64_feature(value):

if not isinstance(value,list):

value = [value]

return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

tensorflow要求我们输入的是list或者直接是numpy.ndarry,如果是list中包含numpy.ndarry [numpy.ndarry]就会报错。上面的那个数组时边长的,返回的时list,没有什么错误,我们补齐看看

a = np.array([[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196,0],

[0, 38, 79, 157,0,0],

[0, 49, 89, 147, 177,0],

[0, 32, 73, 145,0,0]])

"""

TypeError: only size-1 arrays can be converted to Python scalars

"""

这就是因为返回的不是list,而是numpy.ndarry,而_int64_feature函数中先判断numpy.ndarry不是list,所以转成了[numpy.ndarry]就报错了。可以做些修改,一种方法是将numpy.ndarry转为list

for i in range(a.shape[0]): # i = 0 ~ 4

feature = {'i' : _int64_feature(i),

'data': _int64_feature(a[i].tolist())}

这样补齐了我们就可以修改batch的值了

dataset = dataset.batch(2)

"""

[array([0, 2], dtype=int64), array([[ 0, 54, 91, 153, 177, 1],

[ 0, 38, 79, 157, 0, 0]], dtype=int64)]

[array([1, 3], dtype=int64), array([[ 0, 50, 89, 147, 196, 0],

[ 0, 49, 89, 147, 177, 0]], dtype=int64)]

[array([4, 0], dtype=int64), array([[ 0, 32, 73, 145, 0, 0],

[ 0, 54, 91, 153, 177, 1]], dtype=int64)]

"""

当然tensorflow不会让我自己补齐,已经提供了补齐函数padded_batch,

# -*- coding: utf-8 -*-

import tensorflow as tf

def _int64_feature(value):

if not isinstance(value,list):

value = [value]

return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

a = [[0, 54, 91, 153, 177,1],

[0, 50, 89, 147, 196],

[0, 38, 79, 157],

[0, 49, 89, 147, 177],

[0, 32, 73, 145]]

writer = tf.python_io.TFRecordWriter('file')

for v in a: # i = 0 ~ 4

feature = {'data': _int64_feature(v)}

# Create an example protocol buffer

example = tf.train.Example(features=tf.train.Features(feature=feature))

# Serialize to string and write on the file

writer.write(example.SerializeToString())

writer.close()

# Use Dataset API to read the TFRecord file.

filenames = ["file"]

dataset = tf.data.TFRecordDataset(filenames)

def _parse_function(example_proto):

keys_to_features = {'data':tf.VarLenFeature(tf.int64)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

return tf.sparse_tensor_to_dense( parsed_features['data'])

dataset = dataset.map(_parse_function)

dataset = dataset.shuffle(buffer_size=1)

dataset = dataset.repeat()

dataset = dataset.padded_batch(2,padded_shapes=([None]))

iterator = dataset.make_one_shot_iterator()

data = iterator.get_next()

with tf.Session() as sess:

print(sess.run([data]))

print(sess.run([data]))

print(sess.run([data]))

"""

[array([[ 0, 54, 91, 153, 177, 1],

[ 0, 50, 89, 147, 196, 0]])]

[array([[ 0, 38, 79, 157, 0],

[ 0, 49, 89, 147, 177]])]

[array([[ 0, 32, 73, 145, 0, 0],

[ 0, 54, 91, 153, 177, 1]])]

"""

可以看到的确是自动补齐了。

图片batch

直接来测试一下图片数据

# -*- coding: utf-8 -*-

import tensorflow as tf

import matplotlib.pyplot as plt

def _byte_feature(value):

return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

files = tf.gfile.Glob('*.jpeg')

writer = tf.python_io.TFRecordWriter('file')

for file in files:

with tf.gfile.FastGFile(file,'rb') as f:

img_buff = f.read()

feature = {'img': _byte_feature(tf.compat.as_bytes(img_buff))}

example = tf.train.Example(features=tf.train.Features(feature=feature))

writer.write(example.SerializeToString())

writer.close()

filenames = ["file"]

dataset = tf.data.TFRecordDataset(filenames)

def _parse_function(example_proto):

keys_to_features = {'img':tf.FixedLenFeature([], tf.string)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

image = tf.image.decode_jpeg(parsed_features['img'])

return image

dataset = dataset.map(_parse_function)

dataset = dataset.shuffle(buffer_size=1)

dataset = dataset.repeat()

dataset = dataset.batch(2)

iterator = dataset.make_one_shot_iterator()

image = iterator.get_next()

with tf.Session() as sess:

img = sess.run([image])

print(len(img))

print(img[0].shape)

plt.imshow(img[0][0])

"""

Cannot batch tensors with different shapes in component 0. First element had shape [440,440,3] and element 1 had shape [415,438,3].

"""

看到了没有,一个batch中图片的尺寸不同,就不可以batch了,我们必须要将一个batch的图片resize成相同的代大小。

def _parse_function(example_proto):

keys_to_features = {'img':tf.FixedLenFeature([], tf.string)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

image = tf.image.decode_jpeg(parsed_features['img'])

image = tf.image.convert_image_dtype(image,tf.float32)# 直接resize,会将uint8转为float类型,但是plt.imshow只能显示uint8或者0-1之间float类型,这个函数就是将uint8转为0-1之间的float类型,相当于除以255.0

image = tf.image.resize_images(image,(224,224))

return image

但是有时候我们希望输入图片尺寸是不一样的,不需要reize,这样只能将batch_size=1。一个batch中的图片shape必须是一样的,我们可以这样折中训练,使用tensorflow提供的动态填充接口,将一个batch中的图片填充为相同的shape。

dataset = dataset.padded_batch(2,padded_shapes=([None,None,3]))

如果我们想要将图片的名称作为标签保存下来要怎么做呢?

# -*- coding: utf-8 -*-

import tensorflow as tf

import matplotlib.pyplot as plt

import os

out_charset="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"

def _byte_feature(value):

return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def _int64_feature(values):

if not isinstance(values,list):

values = [values]

return tf.train.Feature(int64_list=tf.train.Int64List(value=values))

files = tf.gfile.Glob('*.jpg')

writer = tf.python_io.TFRecordWriter('file')

for file in files:

with tf.gfile.FastGFile(file,'rb') as f:

img_buff = f.read()

filename = os.path.basename(file).split('.')[0]

label = list(map(lambda x:out_charset.index(x),filename))

feature = {'label':_int64_feature(label),

'filename':_byte_feature(tf.compat.as_bytes(filename)),

'img': _byte_feature(tf.compat.as_bytes(img_buff))}

example = tf.train.Example(features=tf.train.Features(feature=feature))

writer.write(example.SerializeToString())

writer.close()

filenames = ["file"]

dataset = tf.data.TFRecordDataset(filenames)

def _parse_function(example_proto):

keys_to_features = {

'label':tf.VarLenFeature(tf.int64),

'filename':tf.FixedLenFeature([],tf.string),

'img':tf.FixedLenFeature([], tf.string)}

parsed_features = tf.parse_single_example(example_proto, keys_to_features)

label = tf.sparse_tensor_to_dense(parsed_features['label'])

filename = parsed_features['filename']

image = tf.image.decode_jpeg(parsed_features['img'])

return image,label,filename

dataset = dataset.map(_parse_function)

dataset = dataset.shuffle(buffer_size=1)

dataset = dataset.repeat()

dataset = dataset.padded_batch(3,padded_shapes=([None,None,3],[None],[]))

#因为返回有三个,所以每一个都要有padded_shapes,但是解码后的image和label都是变长的

#所以需要pad None,而filename没有解码,返回来是byte类型的,只有一个值,所以不需要pad

iterator = dataset.make_one_shot_iterator()

image,label,filename = iterator.get_next()

with tf.Session() as sess:

print(label.eval())

瞎试

如果写入的数据是一个list会是怎样呢

a = np.arange(16).reshape(2,4,2)

"""

TypeError: [0, 1] has type list, but expected one of: int, long

"""

不过想想也是,tf.train.Feature(int64_list=tf.train.Int64List(value=value))这个函数就是存储数据类型为int64的list的。但是如果我们要存储词向量该怎么办呢?例如一句话是一个样本s1='我爱你',假如使用one-hot编码,我=[0,0,1],爱=[0,1,0],你=[1,0,0],s1=[[0,0,1],[0,1,0],[1,0,0]]。这一个样本该怎么存储呢?

以上这篇tensorflow 变长序列存储实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(python变长数组)