OpenCV快速入门七:Mat详解

一 :Mat简介

一切图像皆Mat:
Mat是一个类,由矩阵头——说明书(尺寸、存储方法、存储地址、引用次数)和指向存储所有像素值的矩阵指针构成。

Mat {
public:
---
int    dims;      //维数
int    rows,cols; //行列数
uchar  *data;     //存储数据的指针
int    *refcount; //引用计数
}

1.Mat基本结构

OpenCV快速入门七:Mat详解_第1张图片

二:Mat的构建

以C++为例

1.构造法

Mat::Mat(Size size,int type,const Sclar&s)//将所有元素初始化值为s

也可用ones,zeros,创建空白图像:

Mat m0 = Mat::zeros(img.size,img.type);
Mat mz=Mat::zeros(SIze(w,h),CV_8UC1);

但三通道使用ones只赋值第一个通道,要全部赋值可用Scalar(B,G,R)

2.克隆

Mat m1 = img.clone();

3.复制

Mat m2;
img.copyTo(m2);

4.直接赋值法–矩阵小

Mat r8=(Mat_<double>(3,3)<<1,2,3,4,5,6,7,8,9);

输出

[1,2,3;
4,5,6;
7,8,9;]

5.数组法—数据量大

int a[2][3]={1,2,3,4,5,6};//2行3列
Mat ma(2,3,CV_32s,a);

6.create

Mat m3;
m3.creat(4,4,CV_8UVC1);//数据为乱值

[25,25,25,25;
25,25,25,25;
25,25,25,25;
25,25,25,25;
]

三:Mat拷贝

OpenCV快速入门七:Mat详解_第2张图片

拷贝构造或赋值时,只是新创建了不同的信息头和矩阵指针,但共享一个矩阵
• 赋值运算符和复制构造函数 (构造函数)只复制头。
• 使用clone () 或copyTo () 函数将复制的图像的基础矩阵。

clone深拷贝申请新的空间dst 和src完全独立
copyto是否申请新的空间,取决于dst的矩阵头中的大小信息与src的一致,一致则不申请,否则先申请新的空间再拷贝,类型必须是CV_8U

1:浅拷贝

Mat B(A);

2:深拷贝

clone();
copyTo();
copy();

img为原图,img2为深拷贝,img3为浅拷贝
OpenCV快速入门七:Mat详解_第3张图片

四:图像(Mat)的多种属性

OpenCV快速入门七:Mat详解_第4张图片

import cv2
import numpy as np
img = cv2.imread(r'C:\Users\DMr\Pictures\Saved Pictures\gary.jpg')

#shape属性中包括了三个信息
#高度,长度 和 通道数
print(img.shape)

#图像占用多大空间
#高度 * 长度 * 通道数
print(img.size)

#图像中每个元素的位深
print(img.dtype)

输出
OpenCV快速入门七:Mat详解_第5张图片

五:通道分离合并

1.相关api

split(mat)            #mat:要分离的图像
merge((ch1,ch2----))  #ch:要合并的通道

具体作用可以参考我的OpenCV学习四:TrackBar控件(滑动条)

2.代码演示

import cv2
import numpy as np

img = np.zeros((480, 640, 3), np.uint8)#全黑画布

b,g,r = cv2.split(img)#图像分割

b[10:100, 10:100] = 255#roi---白色
g[10:100, 10:100] = 255

img2 = cv2.merge((b, g, r))#合并

cv2.imshow('img', img)
cv2.imshow('b', b)
cv2.imshow('g', g)
cv2.imshow('img2', img2)

cv2.waitKey(0)

输出
OpenCV快速入门七:Mat详解_第6张图片

每日“大饼” :
你要自己发光 而不是总是折射别人的光芒

你可能感兴趣的:(OpenCV学习,opencv,学习,计算机视觉)