流程:打开摄像头–灰度化–高斯滤波–边缘检测–膨胀腐蚀–找到轮廓
(1)轮廓是圆的话,获取其最小的外包络圆,得到其圆心与半径,进行结果绘制。结果如下:
(2)轮廓是矩形的话,获取其最小的外接矩形,得到其四个点的坐标与倾斜角度,进行结果绘制。结果如下:
import cv2
import numpy as np
import math
import argparse
def initializeTrackbars(intialTracbarVals=0):
cv2.namedWindow("Trackbars")
cv2.resizeWindow("Trackbars", 360, 240)
cv2.createTrackbar("Threshold1", "Trackbars", 200,255, nothing)
cv2.createTrackbar("Threshold2", "Trackbars", 200, 255, nothing)
def main(is_circle = True,):
cap = cv2.VideoCapture(0)
cap.set(10,160)
heightImg = 640
widthImg = 480
def gradient(pt1, pt2):
return (pt2[1] - pt1[1]) / (pt2[0] - pt1[0])
initializeTrackbars()
while True:
ret,frame = cap.read()
frame = cv2.resize(frame,(heightImg,widthImg))
img = frame.copy()
img1 = frame.copy()
imgGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR
thres = utlis.valTrackbars() # GET TRACK BAR VALUES FOR THRESHOLDS
imgThreshold = cv2.Canny(imgBlur, thres[0], thres[1])
kernel = np.ones((5, 5))
imgDial = cv2.dilate(imgThreshold, kernel, iterations=2) # APPLY DILATION
imgThreshold = cv2.erode(imgDial, kernel, iterations=1) # APPLY EROSION
contours, hierarchy = cv2.findContours(imgThreshold, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS
cv2.drawContours(frame, contours, -1, (0, 255, 0), 10)
if len(contours)>=1:
position = np.squeeze(contours[0])
is_pass = True
else:
is_pass = False
if is_circle:
if is_pass:
(x,y),radius = cv2.minEnclosingCircle(np.array(position))
x,y,radius = int(x),int(y),int(radius)
img = cv2.circle(img, (x, y), 10, (255, 255, 0), -1)
frame_circle = cv2.circle(img,(x,y),radius,(0,255,255),5)
print(x,y)
cv2.putText(frame_circle, "Circle-Detection", (20, 25),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 255), 2)
cv2.putText(frame_circle,"position: "+str(x)+", "+str(y),(20,60),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(0,255,255),2)
# cv2.imshow("frame2", frame_circle)
else:
rect = cv2.minAreaRect(np.array(position))
center_x,center_y = int(rect[0][0]),int(rect[0][1])
# angle = int(rect[2])
box = cv2.boxPoints(rect)
box = np.int0(box)
# 获取四个顶点坐标
left_point_x = np.min(box[:, 0])
right_point_x = np.max(box[:, 0])
top_point_y = np.min(box[:, 1])
bottom_point_y = np.max(box[:, 1])
left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
# 上下左右四个点坐标
vertices = np.array([[top_point_x, top_point_y], [left_point_x, left_point_y],[bottom_point_x, bottom_point_y],
[right_point_x, right_point_y]])
pt2, pt1, pt3 = vertices[-3:]
l1 = (top_point_x - left_point_x) ** 2 + (top_point_y - left_point_y) ** 2
l2 = (bottom_point_x - left_point_x) ** 2 + (bottom_point_y - left_point_y) ** 2
if l1 > l2:
angle = gradient(pt1, pt2)
else:
angle = gradient(pt1, pt3)
angle = math.atan(angle)
angle = round(math.degrees(angle))
vertices = vertices.reshape(-1,1,2)
cv2.polylines(img,[vertices],isClosed=True,color=(255,255,0),thickness=5)
cv2.putText(img, "Rect-Detection" , (20, 25),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5, (0, 255, 255), 2)
cv2.putText(img, "position: " + str(center_x) + ", " + str(center_y), (20, 60), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1,
(0, 255, 255), 2)
cv2.putText(img, "angle: " + str(angle), (20, 80), cv2.FONT_HERSHEY_COMPLEX_SMALL,
1,
(0, 255, 255), 2)
result = np.concatenate((frame,img),axis=1)
cv2.imshow("result", result)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument("--iscircle", help="true:circle,false:rectangle",
type=bool,default=False)
args = parser.parse_args()
main(is_circle=True)