pytorch常用函数——数据操作

pytorch常用函数——数据操作

一、入门

torch.arrage()

使用 arange 创建一个行向量 x。这个行向量默认创建为整数。也可指定创建类型为浮点数。张量中的每个值都称为张量的 元素(element)。例如,张量 x 中有 12 个元素。除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。

x = torch.arange(12)

tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

x.shape

通过张量的shape属性来访问张量(沿每个轴的长度)的形状

x.shape

torch.Size([12])

x.numel()

获取张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)

x.numel()

12

x.reshape()

改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。

X = x.reshape(3, 4)
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

我们不需要通过手动指定每个维度来改变形状。 也就是说,如果我们的目标形状是(高度,宽度), 那么在知道宽度后,高度会被自动计算得出,不必我们自己做除法。
在上面的例子中,为了获得一个3行的矩阵,我们手动指定了它有3行和4列。 幸运的是,我们可以通过-1来调用此自动计算出维度的功能。 即我们可以用x.reshape(-1,4)或x.reshape(3,-1)来取代x.reshape(3,4)。

torch.randn()

有时我们想通过从某个特定的概率分布中随机采样来得到张量中每个元素的值。 例如,当我们构造数组来作为神经网络中的参数时,我们通常会随机初始化参数的值。 以下代码创建一个形状为(3,4)的张量。 其中的每个元素都从均值为0、标准差为1的标准高斯分布(正态分布)中随机采样。

torch.randn(3, 4)
tensor([[ 0.1652, -0.7770, -0.9331,  0.5312],
        [ 0.7432,  0.4901,  0.6485, -0.3210],
        [-0.4316,  1.1147, -1.2488,  0.0753]])

torch.tensor()

我们还可以通过提供包含数值的Python列表(或嵌套列表),来为所需张量中的每个元素赋予确定值。 在这里,最外层的列表对应于轴0,内层的列表对应于轴1。

torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tensor([[2, 1, 4, 3],
        [1, 2, 3, 4],
        [4, 3, 2, 1]])

二、运算符

对于任意具有相同形状的张量, 常见的标准算术运算符(+、-、*、/和**)都可以被升级为按元素运算。 我们可以在同一形状的任意两个张量上调用按元素操作。

x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y  # **运算符是求幂运算
(tensor([ 3.,  4.,  6., 10.]),
 tensor([-1.,  0.,  2.,  6.]),
 tensor([ 2.,  4.,  8., 16.]),
 tensor([0.5000, 1.0000, 2.0000, 4.0000]),
 tensor([ 1.,  4., 16., 64.]))

torch.exp()

torch.exp(x)
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])

torch.cat()

我们也可以把多个张量连结(concatenate)在一起, 把它们端对端地叠起来形成一个更大的张量。 我们只需要提供张量列表,并给出沿哪个轴连结。 下面的例子分别演示了当我们沿行(轴-0,形状的第一个元素) 和按列(轴-1,形状的第二个元素)连结两个矩阵时,会发生什么情况。

X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)
(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.],
         [ 2.,  1.,  4.,  3.],
         [ 1.,  2.,  3.,  4.],
         [ 4.,  3.,  2.,  1.]]),
 tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],
         [ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],
         [ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]]))

sum()

对张量中的所有元素进行求和,会产生一个单元素张量。

X.sum()
tensor(66.)

三、节省内存

运行一些操作可能会导致为新结果分配内存。 例如,如果我们用Y = X + Y,我们将取消引用Y指向的张量,而是指向新分配的内存处的张量。
在下面的例子中,我们用Python的id()函数演示了这一点, 它给我们提供了内存中引用对象的确切地址。 运行Y = Y + X后,我们会发现id(Y)指向另一个位置。 这是因为Python首先计算Y + X,为结果分配新的内存,然后使Y指向内存中的这个新位置。

before = id(Y)
Y = Y + X
id(Y) == before

False

这可能是不可取的,原因有两个:首先,我们不想总是不必要地分配内存。 在机器学习中,我们可能有数百兆的参数,并且在一秒内多次更新所有参数。 通常情况下,我们希望原地执行这些更新。 其次,如果我们不原地更新,其他引用仍然会指向旧的内存位置, 这样我们的某些代码可能会无意中引用旧的参数。

幸运的是,执行原地操作非常简单。 我们可以使用切片表示法将操作的结果分配给先前分配的数组,例如 Y [ : ] = < e x p r e s s i o n > Y[:] = Y[:]=<expression>。 为了说明这一点,我们首先创建一个新的矩阵Z,其形状与另一个Y相同, 使用zeros_like()来分配一个全0的块。

Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
id(Z): 140316199714544
id(Z): 140316199714544

如果在后续计算中没有重复使用X, 我们也可以使用X[:] = X + Y或X += Y来减少操作的内存开销

before = id(X)
X += Y
id(X) == before

True

四、转换为其他Python对象

将深度学习框架定义的张量转换为NumPy张量(ndarray)很容易,反之也同样容易。 torch张量和numpy数组将共享它们的底层内存,就地操作更改一个张量也会同时更改另一个张量。

A = X.numpy()
B = torch.tensor(A)
type(A), type(B)

(numpy.ndarray, torch.Tensor)

要将大小为1的张量转换为Python标量,我们可以调用item函数或Python的内置函数。

a = torch.tensor([3.5])
a, a.item(), float(a), int(a)
(tensor([3.5000]), 3.5, 3.5, 3)

你可能感兴趣的:(Python,深度学习,pytorch,python,深度学习)